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ABSTRACT
ASYMPTOTIC SOLUTIONS TO
COMPOUND DECISION PROBLEMS

by John R. Van Ryzin

Simultaneous consideration of a large number of statistical
decisions having identical generic structure constitutes a compound
decision problem. In this thesis, decision procedures depending on
data from all problems are shown to have certain optimal properties
asymptotically as the number of problems increases.

More specifically, let Xa, a=1,2,... be a sequence of inde-
pendent random variables with Xa having distribution Peu, where ea
takes a value in the finite parameter space Q = {0,¢e00,m-1}. Let the
space of all sequences {ea, a =1,2,...} be denoted by €_. Fix N and
consider the first N members of the sequence of Xu's. For each
@ = 1,.04,N, it is required to make a decision d, among n available
decisions {0,...,n-1}. Such an N-fold decision problem is called a
finite compound decision problem.

Any N x n matrix of functions T(x) = (taj(x)), where
tuj = Pr {du = j|x} with x = (xl,...,xN), @ = 1yeeaylNy J = Og00s,n-1,
is a decision procedure for the N-fold compound problem. Define the
risk of any such procedure, denoted by R(6,T) for 6 € Q_, as the
average of the risks for the N problems. With pi(e) as the relative
frequency of problems in the first N problems having P; as the govern-
ing distribution, i = 0,...,m-1, Ve see that p(e) = (po(e),...,pm_l(e))
constitutes an empirical distribution on Q. There exists a non=-

randomized procedure t;(e) Bayes against p(8) which has risk

V.
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#(p(8)) = R(e,t;)(e)). The function R(8,T) - ¢(p(6)), called the regret
risk function for the procedure T, is used as a measure of the optimality
of the procedure T.

Existence of asymptotically good, unbiased estimates
&=t zz=l h(xa) of p(8) is verified. To obtain procedures whose
regret risk function converges to zero as N +«, these estimates are
substituted into the procedure t;(e) to form the procedure té, which
depends on data from all N problems. Under integrability assumptions
on the kernel function h, convergence theorems for the regret risk
function of tﬁ are proved. These theorems are all uniform in 6 € Q_.

The main result is that if [h|3 is integrable with respect to

Pi’ i =0,s0s,m~1, then the regret risk function of té

N-l/2

converges to

zero at rate O ) uniformly in 6 ¢ @ . If m = n = 2, faster uni-

N—l/2)

form convergence rates of of and O(N-l) are attained under suc-

0 and Pl and
-1
)

integrability assumptions on h. A uniform theorem of O(N

cessively stronger continuity restrictions on P

for the
general m X n problem is also given under a strong continuity condition
on the family {PO,...,Pm_l} and a certain restriction on the m x n

loss matrix of the generic problem. Examples violating the loss matrix

condition are shown to have rate no faster than O(N_l/2).
Additional results are presented whenm = n = 2 and Pg 5 for
a

a =1,2,..., depends on a fixed, but unknown, nuisance parameter

T = (11,...,15) in a non-empty open set of Euclidean s-space. Under

suitable regularity conditions on the likelihood ratio of Pl and Po

at the point 1, an asymptotic convergence theorem, uniform in 6 ¢ @
o0

=(1/2)+¢ ;
and of O(N ), €>0, is proved for the regret risk function of
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the procedure obtained by substituting the estimate h for p(8) and a
suitably chosen unbiased estimate t=1t Zﬁ=1 k(X,) for t. Theorems
which are jointly uniform in 6 € Q_ and T € C, a compact subset of R®
are also given. When s = 1, two theorems dropping the factor N+€ in
the convergence rate are established under appropriate restrictions.
Many examples illustrating the extent, applicability, necessity,
and non-vacuity of the various theorems are added for completeness.

The emphasis throughout the thesis is on obtaining optimal

asymptotic procedures in the sense of uniform regret risk convergence.

vii.






INTRODUCTION

The idea of the compound decision problem was first presented by
Robbins in [10]*. When a large number of decision problems of iden-
tical nature occur, then the compound approach is applicable. In his
paper, Robbins gave an example illustrating that when there are a
large number of testing problems between two normal distributions
N(-1,1) and N(1,1), then there exists a compound procedure whose risk
is uniformly close to the risk of the best "simple" procedure based on
knowing the proportion of component problems in which N(1,1) is the
governing distribution. This compound procedure depended on data
from all component problems. Also in [10], heuristic arguments were
given to illustrate that such a phenomenon could be expected more
generally.

Hannan in [5] (see also Hannan and Robbins [7]) extended this
result of Robbins to two arbitrary fully specified distributions;
while simultaneously strengthening the conclusion by replacing "simple"
by "invariant." Furthermore, in [7] it is shown that when the number
of component problems is large, the compound procedure given has risk
which is e-better than the available minimax procedure.

In this thesis, we improve and generalize some of the results of
Hannan and Robbins. Specifically, we examine asymptotically the dif-
ference in the risks (the regret risk function) of certain compound

procedures and the empirical Bayes "non-simple" procedures.

*yumbers in square brackets refer to the bibliography.
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In Chapter I, the general finite compound decision problem is

presented. Also, we define "simple" Bayes procedures, which in turn

motivate a class of "non-simple" compound decision procedures based on

estimates of the empirical distribution on the finite parameter space.

Theorem 1 solves the necessary estimation problem, while Corollary 1
and Lemma 5 set the stage for later developments.
In Chapter II, we treat the case of compound testing between two

completely specified distributions P, and Pl. Theorem 2 extends the

basic theorem of Hannan and Robbins ([7], Theorem 4) by strengthening

the asymptotic convergence rate of the regret risk function. Two
additional theorems (Theorems 3 and L) are proved. Both of these
theorems give faster convergence rates under certain continuity require-
ments on Po and Pl.

In Chapter III, we extend the results of Chapter II where possible
to the general finite compound decision problem of Chapter I.

Theorem 5 generalizes Theorem 2. Counter-examples to generalizations
of Theorems 3 and 4 are given. However, by restrictions on the loss
matrix of the component problem, Theorem 6 presents a suitable extension
of Theorem k4.

In Chapter IV, the compound testing problem between two distribu-
tions in the presence of a nuisance parameter is considered. Conver-
gence theorems for the regret risk function are given under suitable
regularity conditions in the nuisance parameter.

At this point we introduce notation which will be used consistently

throughout this thesis.



3.
Let R® be m-dimensional Euclidean space (Rl will be denoted simply

i o . om
by R). Let x = (xo,...,xm_l) and y (yo,...,ym_l) be vectors in R .

Define the vector xy = (xoyo,...,xm_lym_l). The inner product and
m-1
norm of R® will be denoted respectively by (a2 zi=o x5 and
1/2 ; : .
lIxll = (x,x)" . The inner product (eye) and norm ".“ notations will

refer exclusively to R® unless otherwise noted. Also, we will use

|x| to denote max, | |

Operator notation will be used to indicate integration. Let
(S,&iP) be any finite measure space with ¥ a o-field on S and P a
finite measure on (5.31)_ If X(s) is any real-valued integrable
function on S, then PX will be used to denote the integral J/;(s)dP(s).
If P is a probability measure and X is a real-valued random variable,
then PX denotes the expected value of X.

Also, we will make extensive use of the following notation for
the characteristic function of a set A. The characteristic function
of A will be denoted simply by A enclosed in square brackets; that is,

1 if a € A.
[al(2) =
if a £ A.
In reference to the previous paragrapn, if F is a set of 3’ and X(s)
is any real-valued integrable function, then the P measure of F is
given by P[F] and the definite integral /é%(s)dP(s) by P(X[F]).

We will adopt the notation of Halmos ([4], Chapter VIII) to
indicate induced measures under measurable transformations. Let T
be a measurable transformation from (S,gfﬁﬂ into (s', #'), vhere 7
is a o-field on S'. Then, let PT_l denote the finite measure induced
on (S8', ') under the transformation T. The measure PT_l is defined

by the identity PT™1[F'] = p[T"Y(F')] for all F' ¢ F'.
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Finally, we shall make repeated use of the Berry-Esseen normal

approximation theorem (see Logve [9], P« 288). This theorem, for

simplicity, will be referred to by the letters B-E and the uniform
constant in the bound by 8. The standard normal distribution function

will be denoted by ¢(+) and the standard normal density by ¢'(<).

Further notation will be introduced as needed.



CHAPTER 1

THE FINITE COMPOUND DECISION PROBLEM

1. Statement of the Problem,

Consider the following finite statistical decision problem. Let
U be a random variable (of arbitrary dimensionality) known to have one
of m possible distributions Pg, 9 in the finite parameter space
Q@ = {0,s0s,m-1}. Based on observing U we are required to make a
decision d e = {0,.s.,0-1} incurring loss L(i,j) (or Lg) iy el = gV
when U is distributed as Pi’ i = 0ye00,m-13 J = 1yeee,n-l.

If we simultaneously consider N decision problems each with this
generic structure, then the N-fold global problem is called a finite
compound decision problem. More precisely, let Xa, a = 1,...,N be
N independent observations each distributed as Peu with Sa ranging in
Q. Based on all N observations, a decision dg in 0" is to be made for
each of the N component problems. For the oth subproblem, the decision
'dcl = j' represents selecting the jth column of the m x n loss matrix.
Note that in the case here considered all N decisions are held in
abeyance until all random variables Xa, @ =1,...,N have been observed.

In considering compound problems of the type described above, most
of the results are of an asymptotic nature; that is, as N > <., Hence,
it will be convenient to adopt the following viewpoint. Let Q_ be the
set of all sequences 6 = {eala = 1.2 .. s} Where ea ranges in 2. Consider
now the above-stated compound problem (for N finite) as imbedded in the

denumerable compound decision problem indexed by 6 € £, 8 = {Ga}.

Let Pe be the product probability measure xa=1 Pe . The above N-stage
o
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compound problem is equivalent to the compound problem obtained Dby
observing the first N members of the sequence of random variables

{Xl,X2,...} distributed as P, 6 € Q_.

e’
Before proceeding, we introduce the following notation. With U
as the generic name for the random variables Xa of the component
problems, assume there exists a o-finite measure u dominating
(Po,...,Pm l} such that the measurable densities
dPi
(1) f.(u) =— (u) 2K a.e. U
i
du
for some K < », There is no loss of generality in this assumption
m=-1
since we may always choose uy = Zi=° Pi and K = 1.
Also in referring to the m x n matrix of losses L(i,j) or Li,

the rows will be denoted by L;, the columns by LJ, and the difference

kJ
L(ik) = L(1,d) by L., & = 0yeuuymely §k = 0,.0u,n-l

2. Decision Procedures.

For the compound decision problem, a decision procedure may
depend on tne full observation X = (Xl,...,XN). Any N x n matrix of
measurable functions T(x) = (taj(x)) will be called a randomized deci-

sion function (procedure) for the compound decision problem if for
n-1

o ="1,00 0, N3 § =10, e0e,n=1, tuj(x) = Prid, = J|x} and 2. tuj(x) = Al
J=0

)

et

th
The o row of T(x) will be denoted by t(a)(x) =(t (x (x))
ao an-1 £

The decision function T(x) is said to be simple if there exist

. L (@)
functions tj(.), J = 0yeusyn=1 such that t* ’'(x) = (to(xu)’°'°’tn-l(xa))
for @ = 1,...,N. A simple decision function will be denoted by

t = (to....,tn_ )i

1



Te
With N fixed and 6 € Q_ we denote by R(6,T) the risk function
for the compound decision procedure T(x). This risk is defined to be
the average of the component risks Ra(e,T) = Pe(Le ,t(a)(X)), for each
a

subproblem, o = l,...,N. Hence

N
(2) R(6,T) = N°T [,y Fa(6sT) = Pg(8,T(X),

(

-1 N a)
where W(6,T(x)) = N za=1(L t (x)).

e ’
a

The risk (2) may be considerably simplified in the case of a
simple decision function. For the sequence 6 € Ry and i = 0y00.,m=1,

N
-1
define the relative frequencies, pi(e) =0 ) l[ea = i), of problems

in the first N problems in which the distribution P; governs. The
vector p(6) will be called the empirical distribution on Q.

Let t = (to,...,tn_l) be a simple decision function. The loss

incurred in using procedure t is

N
-1
(3) W(e,t) = N za=l(Lea,t(xu))
m-1
=1 py(0) favy (L selx DT,
i=o a a
where AVe =5 indicates the numerical average on the Npi values eu Sl

Now sincea(Le ,t(xa)) for 8 = i are independent identically distributed
random variab;es with mean pi(t) = Pi(Li,t(U)), we may express their
expected average as pi(t) to obtain from (2) and (3),

1

M=
(L) R(6,t) =]  p;(8) p;(t) = (p(8),p(t)).
i=o
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Let £ = (& AOOGHE ) be any vector in m-dimensional Euclidean
o m-

1
space. Let tj(u) 20, j =0,000,n-1 be a set of measurable func-
tions such that 2;: t;(u) = 1. Define the function ¥(E,t) as
follows:
(5) v(E,t) = (&,0(t)).

Note that for £ = p(6) the function y becomes the risk function (4)
for the simple decision procedure t.

The problem of choosing t(u) to minimize y(£,t) for fixed £ is
straightforward. From (1) and (5), we have

1

n=- s
(6) wg,t) =u ] (g,0018(0) £,(U) .
j:

o
Therefore, (6) is minimized in t for fixed £ by any vector function
tE (defined a.e. u) which is chosen as a probability distribution
concentrating on the columns I..‘j minimizing the quantities (E,Ljf(u)).

That is, t, is of the form

3
(7) tE j(u) =1, 0 or arbitrary, for (£,L9f(u))
’
. v
<y >, O = mlnv#j(g,L £(u)),
n-1
such that t_ (u) 2 0 for j = 0,...,n-1 and ) o ()= e e
€5J j=o s
Note that if £ is abona fide a priori distribution,
m-1
(0 = i 7 g = 1), then such a t5 would be a decision procedure
i=o
Bayes against §.
We observe that any randomized procedure of the form (7) mini-

also minimizes y(£,t) for fixed & In particular, one such non-

mizing y(€,t) may be replaced by a non-randomized version which
randomized version is given by the coordinate functions
|
|
.
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1A

1 if (£,098(w) < or = (g,L%¢(w)

(8) t' (u) = according as k < j or k > J

, 0 otherwise.
To see that (8) is of the form (7) we merely note that
t (u) = (té (@) acic g e l(u)) is a probability distribution concen-
tratlng on the first column minimizing the quantities (&, LY f(u)
In what follows we restrict ourselves to the non-randomized version
té of the Bayes procedure tE'

In [6], p. 102, Hannan has given a useful inequality for Bayes

rules. A statement and proof of a similar result is given here.

Lemma 1.
Let X be a space closed under subtraction. Let M(x,y) be a
real-valued function on X x Y such that M(+,y) is linear on X for

each y € Y and infy M(x,y) is attained for each x € X. Define

f(x) infy M(x,y) and let y(x) be any Y-valued function such that

£(x) = M(x,y(x)) on X. Then, if x, x' € X,

0 £ M(x,y(x'")) = £(x) & M(x-x',y(x")) - M(x=x',y(x)).

Proof. The lower inequality results from the definition of f(x) and
the upper inequality follows by adding the non-negative term

M(x',y(x)) - £(x").

Now define for £ € R the function

(9) ¢(g) = inf, Y(E,t) = (C,o(tg)).
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The last equality in (9) follows by noting that (7) minimizes y(E,t).

Observing that (&,0(t)) is linear in £ and p, Lemma 1 and (9) yield

Corollary 1.
m
If £, €' € R, then

(10) 0 = W(Esty) = 0(8) = (E-g'5p(tp) - p(t.)).

This corollary inspires the non-simple rule to be adopted later
(see (12)). If p' ¢ R™ is a good approximation to p(6) in the sense
that ”p'-p(6)||is small, then Corollary 1 says that the simple proce-

dure tp,(u) has risk within ||p'-p(8)|| Hp(tp,) - n( ))|[of the

t
p(6
minimum attainable risk in the class of all simple procedures, given
by ¢(p(6)). Therefore, not knowing p(6) in general, we seek estimates

P = ﬁ(xl,...,xN) of p(6) which with the aid of Lemma 5 take advantage

of the risk approximation of Corollary 1.

3. Estimation of Empirical Distributions on Q.

The results in this section are based on some unpublished lecture

notes of Hannan [8].

Let (P be the class of all distributions on @ = {0,...,m-1};
m-1
. m
that is, P = {n|n"c R, ny 20, 2 g = 1} . For n e P define
i=o

m-1 1 Y
) n;P; with p-density fn(u) = (n,f(u)).

i=o
The class of all distributions ¢2 is said to be identifiable if for

the probability mixture Pn =

any n, n' e P, fn(u) = fn.(u) a.e. u implies that n = n°',
Let Ll(u) and L2(u) be the function spaces of pu-integrable and

u=-square integrable functions respectively. The usual norm and inner

product for f, g € L2(u) will be denoted respectively by “f"‘_| and
(fag) .
u
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Lemma 2.,
The class &D is identifiable if and only if the set of densities

{fo,...,fm_l} are linearly independent in Ll(u).

Proof. Sufficiency. Let fn(u) = fn,(u) a.e.u. Then, (n-n', £(u)) =0
a.e.p and by linear independence of {fo,...,fm_l} it follows that

n. =n! for i = 0,.44,m-1. Hence, n = n' and (P is identifiable.

1]
L 1
Necessity. Let (P be identifiable and let c € R™ be such that

. o - e o
(c,f(u)) = 0 a.e.n. Define c; and c, as the positive and negative

zm—l

l + m-l
i=o e z

parts of c,. Then O = u(c,f(u)) = c; end hence Z g

m-1 + i m-l + * = m-l +,-1 -
I Ei=o c; > 0, define d (Z 4 ci and d (Z l) c .
Then, £ (u) = £ _(u) a.e.u and by identifiability of 09 d: a for
d a-
all 1. Hence, c; = cI - c; = 0 for all i and ¢ = 0. Thus, necessity

is proved.

A vector function h = (h ,...,hm ) with coordinate functions

it
hi € L (pu) is an unbiased estimate for the class ¢D S e h n for

all n € &D Under the condition of identifiability of the class 6ﬁ
existence of unbiased estimates for 00 will be shown. Henceforth, in
accord with Lemma 2, the set of densities (fo,...,fm_l] are assumed to

be linearly independent in Ll(u). Let & bve the class of all unbiased

estimates for the class 69.
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Lemma 3.

A necessary and sufficient condition for h e é? is that

= = i = 0,s00,0-1, where 6.. is the
Pih S (610""’6i m—l) e ’ & 2 1J

Kronecker 6.

Proof. Sufficiency. If (Pihj) is the identity matrix, then
Ph=n(P.h.) =n for all n € fD.
n 1y
Necessity. Observe that € € éD and unbiasedness of h imply
P. H=g.; that is P.bh = g,
Gy i il i
i

The following subclass of é? is of particular interest. Let 3#5
be the subclass of é? such that if h s,%l, hJ € Lz(u) for
J = 0yeee,m=-1, where h = (ho,...,hm_l).

Let S be any subspace of Lz(u) and ST be the orthogonal comple-
ment of § in L,(u). For any g e Ly(u), denote by gg, gqL the
projection of g on S and SJ'respectively. Note that if g € L2(u),

g =gg+ Bgle

We now give a theorem which proves the existence of unbiased

estimates for ﬂj and which yields the structure of the class ﬂ/.

For j = Oye44,m=1, let Sj be the subspace of L2(u) spanned by

{fili # j}. Let S be the subspace of L2(u) spanned by {fo""’fm-l

Fe.

Theorem 1.

The class‘g/ is non-empty. Furthermore, h eﬁ% if and only if

h(u) = £*(u) + g(u) a.e. u, where f;(u) = (

W) (e ||
s il ol )™" and
L ij ij u

gj(u) e Syifor Ji= 0 0. oym=1.
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. * 1 % _ * i i i
Proof. Note that since £y e Sj’ Bty = (fjvfi)u = ([ sifere kil i g g
* » *
Also, we have that P;if; = (fi,f;) = 1. Thus, by Lemma 3, fj eé?

isTi
b
(and hence ;/ is non-empty since f; € L2(u)). Sufficiency follows

by observing that Pig; = (gj,fi) =R0F Bor Nt R =R 0 RRm=1"

H

Conversely, if h € 5$L, let h = hg + hgl having coordinate
functions hj = hjs + hjsi.for J = 0,6s0ym=1. Since hjSL is in the
orthogonal complement of S for j = 0,.ss,m=1, hg € 3#. Hence,

(fj—hjs,fi)u =0 for i,j = O,...,m-1. But this implies fj-

gl

hjS is in
as well as S. Hence, f* = hg a.e. u. Necessity follows by

defining g = hSL.

Observe that the functions f; of Theorem 1 form the dual basis

to (fo,...,fm_l} in the conjugate space of the subspace S.

Corollary 2.
There exist h e & such that |hj(u)| S M a.e. p for i = 0,¢..,m-1

and M finite.

Proof. Choose hj(u) = f3(u) for i = 0,...,m-1. Then, since the
ff's lie in S, they are essentially bounded as linear combinations

of the essentially bounded densities {fg,ees,fp 17

The importance of the class 8 in obtaining estimates for p(8)
can now be seen. Let X = (Xl,...,XN) be the random observation for
the N-fold compound problem stated earlier. Define by use of the

kernel function h € é? the random variable

- = N
(11) Bgi= e ] nix )


http://ft.fi

1k,
This equation yields an unbiased estimate of the empirical distribu-
: = -1 ¢N g
tion p(8) for all 6 € Q_, since Peh(X) =N za=1 eea- p(e)is £k e&
and h is bounded as in Corollary 2, then h(x) inherits this bounded-

ness through (11).
Consider now the subclass })/ of €. Iftn-= (ho,...,hm_l) € QV/,

q 2
then boundedness of the densities f, implies Pth(U) < =, Denote the

2

variance of h, under P, for 13§ = 0ye00,m-1 85 0, (hj)'

J

Lemma k4.
m-1

2
Ifhe ;/, then Pe”E;p(e)“ s CeN—l, vhere C° = max, zj=o of(hd).

Proof. By direct computation, we have

_ & m-1 - 2
Polln-p(e)ll = 1,_, Pg(hy-p,(8))

-1 m-1 m-1 2
i Zj=o zi=o pi(ﬁ) ci(hj)

cent,

n

L, Non-simple Decision Functions.

With h € j%l and the estimate h(X) of p(8) given by (11), we
novw define a non-simple decision function which results from substi-
tuting B(X) for p(8) in tp(e) as given by (7) (see Hannan and Robbins
(7], p. 44). In so doing, we shall confine ourselves to that
particular non-randomized version of tp(e) given by (8) and denoted

by té(e). The resulting non-simple, non-randomized decision
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procedure consists of the N vector functions tl(x =R G (G W)
; ey h,o
t_ (xa)) for a = 1,...,N, where

h,n-1

/

1ir (B2 ) < or £ (BLV1(x))
(12) tl (x ) = according as v < j or v > j

0 otherwvise,
LR =ROR Ty n=1%

The question immediately arises regarding optimality properties
of the procedure t;. As a partial answer to this question, consider
the function E
(23) R(6,T) - ¢(p(e))

for the decision function T(x) and 6 € Q . This function will be

called the regret risk function against simple decision functions for

the decision procedure T(x)., A worthy defensive goal is to select a
decision procedure T(x) which makes the regret risk function small
uniformly in 6 € @_. In Chapters II, III, and IV it will be shown
that the procedure tl (or a slightly modified version thereof), has,
under suitable condi:ions, good asymptotic properties in the sense
that its regret risk function given by (13) is close to zero uniformly
in 6 e Q for N large.

We now give a useful decomposition lemma for the risk R(6,T) in

(13) for T(x) such that

(1k) T (x) = t;(x ey
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where ¢ = ¢(x) = g(xl,...,xN) takes its values on a finite Euclidean

m-1
K = et u)) is defined on RE x U
space R~ and t;(u) (t;,o(U)"' s C,n-l( )

n-1 = >
witn 8; = {u[f;(u) > 0} such that Zj=o te,;(w =1, t,, 5w 2 0.

i=o

Lemma 5.
Let T(x) be a compound decision function of the form (1L) and
let 6 ¢ Q,+ Then,

(15) R(8,T) = Py(p(6), o(t )

J

it PP Lk &
6 6, 8q

Bl Zk#j (v ¢, (W)

+ N
z(e) %)

(a)

where oi(t ) = P.(Li,t (U)) and ¢

c 5 = L(xl,...,xa_l,u,xu+l,...,xN)

4

and the Pe integral in each of the li-terms of the second term of
a

(15) is on U.

a
Proof. Fix a = 1,...,H and express Pe(Le 3 T( ) (X)) as an iterated
a
integral, make a change of variable, and perform an added integration

as follows,
7
({0 o (x)(xa)) dpea(xa)ni#adPei

(16) Pe(Lea,T(a)(x)) J(Lg st,
Qa

i#a 6.

= (Tt (u)) dP, (uw)n,  dP
[ ea L(a) By i

=‘/(L6a,tl(a)(u)) arg (W aP

n

Pepea(Lea'tg(a)(u)) ;

where PePe represents an iterated integral, Writing t ( )(u) =
o a

tc(a)(U) - tc(u) + tL(u) in the right-hand side of (16) and averaging

over all a, we have



7
_ =1 ¢N
(17) R(8,T) = N 2a=l PePea(Lea,tL(U))

syt o

a=1

Pepeu(Lea;tc(a)(U) = tQ(U)) .

The first term on the right-hand side of (17) may be simplified

to Pe(p(e),p(t )) by noting that for 8., = L (Lg ,tC(U)> are point-
a o

4
wise equal to pi(t;(x))'

The second term in (17) may be simplified to the second term

t

in (15) by observing that (L u)(u) - tc(u)) is the difference of

ea' ;(
two inner products and that the components of t (a)(u) and of tc(u)
(4

sum to unity.



CHAPTER II

ASYMPTOTIC RESULTS FOR THE COMPOUND TESTING PROBLEM
FOR TWO COMPLETELY SPECIFIED DISTRIBUTIONS

1. Introduction and Notation.

In this chapter we discuss the compound decision problem of test-
ing between two specified distributions. Robbins [10] showed that in
the case where the component decisions were between N(-1,1) and
1(1,1) there exists a decision function whose regret risk function
approaches 0, uniformly in 6eQ_, as the number of problems N becones
large. lannan and Robbins [7] extended this result to the case where
the component decisions were between any two completely specified
distributions. More extensive discussions of these and related
results are given in [5], [7], and [11].

We treat the case as given in [5] and [7]. Three uniform con-
vergence theorems for the regret risk function against simple decision
functions will be given. The first of these theorems (Theorem 2 below)
is an improvement of Theorem 4 in ([7]. The improvement is in the
rate of convergence. Before proceeding to the theorems some nota-
tional simplifications for testing between two distributions Po and

Pl are in order.

Let m = n = 2 and take L(0,0) = L(1,1) = 0, a = L(1,0) > 0, and

b = L(0,1) > 0. Specify the dominating measure to be y = aP. + bP

1 ot

and note that by (1.1),

(1) af_(u) + bfo(u) =1 a.e. u.

18.
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Define now the measurable transformation into [0,1] by
(2) 2(u) = beo(u)
with (1) implying that
(3) 1 - z(u) = afy(u) a.Ee U
Let uZ-l be the measure induced on [0,1] by the transformation (2)
and denote by uZ-l(z) the non-normed left-continuous distribution
function corresponding to uZ—l. Note that uZ—l(z) has total variance
a + b since uZ-l(O) = 0 and uZ_l(l+) = o tnh

Identifying tu(x) = t _(x) of Chapter I we can express a com-

al
pound procedure by the N functions ta(x), R s s inee
specification of tao(x) is not necessary as tao(X) =1 - tal(X)' Also,
we represent a simple decision function by the single function t such
that ta(x) = t(x,).

For any p real, define the vector & = (IN=Sp, BN insa=spacetsiin
accord with (1.5) define for the simple decision function t the function
(L) ¥(p,t) = b(1-p) P t(U) + apPy (1-t(U)).

A simple decision function minimizing (4) for fixed p, as given by

(1.7), can with the aid of (1) and (2) be written as,

as 7(u) <,>, or = p, where 056_ = 1.

(5) () = ALAElE @ .

D p
The non-randomized version of (5) with 6p = 0, corresponding to
(1.8), shall be denoted by t;.
Also, by defining 9 = pl(e), we may simply express the Bayes risk,
given by (1.9), against (1-0,6) on & = {0,1} as
(6) #(8) = int, v(F,6) = (@) .
The assumption that P, and Py are distinct implies that f, and fj
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are linearly independent in Ll(u). Furthermore, the choice of UM
implies f, and f, are essentially bounded functions. Thus, by
Theorem 1 there exists a scalar function heLp(u) such that P;h(U) =i
for i = 0,1; that is, identify h with hj of Theorem 1 and regard 3%5
as a class of scalar functions (ho being defined as 1-h). For such
an h € 9%, define for i = 0,1,

2, 3%(n)

P, (n(v) - )%, T 3

= max;_g 1 {igs

hEks

o
n

(1) o}

1

and for any 0 £ p £ 1,

2 2
(8) o2(n) = poy(n) + (1-p) og(n) .
= -1
From (1.11) we now have the unbiased scalar estimate h(X) = N
N -
) h(Xa) of © and from (1.12) the associated compound decision rule
a=1

(nere slightly modified at Z(xa) =0 or 1) given by

tA(x) = (£X(x7),.00,t2(xy)), where, for a = 1,...,N1,

h
1 if 72(x,) < &, z(x,) € (0,1) Z () o=Na
(o) ti(xa) ) i = i Xy) € or X0
h 0 if Z(xa) 2 T Z(xa) e (0,1) or Z(xa) =l

Observe that if h e [0,1], then (9) is a decision procedure Bayes
against a priori (l-F,H) in the component problem.

The justification for modifying (9) at the endpoints Z(xa) =0
and Z(x,) = 1 will become apparent if one considers the risk function
R(6,t) for any decision procedure t(x) = (tl(x),...,tN(x)). The
component loss for the ath subproblem using t(x) is given by
aby(1-ty(x)) + b(1-684)te(x). Hence, this risk, as the expection of
the average of the N component losses, can, with the aid of (2) and

(3), be expressed as
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N
(10) R(o,8) = NPT [{6 (1t (x))(1-L(x,))+(1-8 )t (x)Z(x ))an(x ).

Now note that in (10) if ta(x) # 1 for Z(xu) = (0 ©re ot ta(x) F 0 for
Z(xu) = 1 we may always redefine tu(x) at these endpoints to achieve
a risk which is at least as small as (10) (and maybe actually smaller,
in which case t would be inédmissible). To avoid such a possibility
with decision procedure (9) we have made the apbropriate modifications

at the endpoints Z(xa) = 0 and Z(xu) =0 oo =R e

2. An Inequality for the Regret Risk Function.

We shall develop a useful inequality (see (13)) for the regret

*

risk function. We have already defined the procedure th

such a way that there is no contribution to the ath term of the risk

by (9) in

*
R(e,tg) in (10) at the endpoints Z(xa) =0 or 1 for o

l,e00,N0

The risk R(6,t_) has this same property since R(6,t_) R(a,ti).
Therefore, foreconvenience in notation, we define tge restriczions
of the P, measures to 273(0,1) as follows: P;(B) =P (BN z7(0,1))
for any Borel set B, i = 0,1. Also, observe that u' = aPi + bPé is
the restriction of u to Z_l(O,l).

Consider now the application of Lemma 5 to bound from above

R(6,t*) - ¢(8). With B t* in Lemma 5, we bound the second term

h h
in the right-hand side of (1.15) from above by dropping all terms
; = k) * *
with negative coefficients Le and express t—(u) and t_ in their
a h h

characteristic function form to obtain,



N KJ
(11) ki ¥ sE B : tf};(a) (U e (U)
a=1 k#j ¢ 9% g ’ sJ
sxlay p_ P [w*) Sz <h]
ael; 6 1
1 v RS =(2)
+ 10" b zailo B Po (hsz<h '] .

where I, = {a|8, = i} for i = 0,1.
The integrand in the first term on the right-hand side of (1.15)
can be expressed as w(é,tg) and, since té is Bayes against (1-6,6),4(8)

o ]
by (6) equals w(e,té). Hence, definition (L), expression of te and

t% in characteristic function form, and the definition of u' yield

(12) (p(e),o(t%)) - ¢(9)
= u' {(1-9)z([z<h]-[Z<6]) + 6(1-2)([hsz]-[b52])}
= ' {(2-8) ([852<n]-[hsz<F])} -

where the second equality follows by set algebra and algebraic
cancellation.,

Equations (11) and (12) combine to yield the following inequality
for the regret risk function:

(13) R(g,t2)-¢(p)
h

2 pgut {(2-0)([52<h)-[RE2<6])}
+vla Xaell Py Pi[g(a);Z<g]

h 1 T2 T 0.)
+0 b ZGEIO Po PilbiZ<h )
where I; = {alo, = i} for i = 0,1,

When applying inequality (13) the three terms on the right-hand

side will be denoted by Ay, By, and C respectively.
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3. A Convergence Theorem of O(N'l/z)-

Sufficient conditions for uniform convergence (in 0€Qx) of

O(N'l/z) for the regret risk function of the procedure t; will

be given. Before proceeding to the theorem we state the following
inequality: If C be a non-negative real number and if N'lépél, then

(1k) e R EN I e

Verification of inequality (1) is straightforward: If

(Np-1) 2 c2, then Nl/zp(Np—l)-l/gc = CP1/2(1—(NP)'1)‘1/2

1/2
: D

A

C2, then Nl/2P = (Np)l/

A

o12(14c2)1/2 , and if (Np-1)

A

(1+c2)1/2 pl/2.

Theorem 2.
It he & and e L3(P;) for i = 0,1, then R(8,tg) - ¢(B) = a(w-1/2)

uniformly in 6 € Qm.

Proof. In inequality (13) we show: (i) Ay = o(N'l/E) uniformly in

6 € 9., and (ii) By and Cy are of o(n’l/2)

uniformly in 6 € Q_.

(1) Since u'{(2-8)([65z<h] - [B52<8])} & |n-8|(a+b) a.e. P,
b Ay & (a+D) Pe(Nl/2|E:§|) S (a+b) og(h) 2 (a+b) o(h).
Independence of 6 € Q°° for the upper bound implies uniformity and (i) is
proved.

(ii) In bounding the term Nl/ZBN, we can assume without loss of
generality that I, is non-void and oj(n)>0. If of(h) =0, then
& —m el
—(a)

[h <7<n] = 0 a.e. P, x P{ for a € Il; that is, By = 0.

n(u)-h(x )) =h a.e. P_ x P] for all a e I, and hence
a 6
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Fix @ € I; and N and let 0y = 03(h) > O. Define

o) _ -
s=1 (n{x;)-1), 0% =Var(8), and T = N(Z-6} 1= ZiEIOh(xi)'
iely,ita
Then,
(%) — .
(15) [h" "Z2z<n] = [T-h(xy)<82T-h(u)] 3
Apply the B-E theorem conditionally on u, X, and X e Io’ to the

1

= . —il -
normalized sum o 1s at the endpoints o (T—h(xa)) and o " (T-h(u)) and

bound the resulting absolute difference in normal d.f.'s by

=~ =2 ;
¢'(O)!h(u)-h(xa)|0 1. Noting that a2=(N6—l)cl, the result from (15) is
—(a)

(16) P, P} [B z<h]
e =l
S min{1,(n8-1)"" (2'(0)o; PiPeu]h(U)—h(Xa)| + 2827)}
=3 3
vwhere a, = o) Py |h(u)-1]~.

Weakening the bound in (16) by the Schwarz inequality applied to

1/2
PiPealh(U)-h(Xa)| g {P{Py (n(U)-n(x ))2} / : 21/2, , and summing (16)
o

a
= - \=1/2
over all a ¢ I, we have By € a 6 min{1,(N6-1) / by}, where
by = 21/2 2'(0) + 2Baj. Inequality (14) now yields the desired result
12 < 12

N By S a(1402)77,

i¥2 2
A similar argument shows that N / Cy : b(l+b§) » where b =
21/2§'(O) + 2Ba_ with ag = 053P0|h(U)|3. Finally, since by and by

do not depend on 6 ¢ Q_, (ii) is proved. The theorem now follows by

(i), (ii) and inequality (13).

At this point it is worthwhile to make a few remarks regarding
the assumptions on h in Theorem 2. By the choice of u it is evident
that fo and fl are essentially bounded and hence Corollary 2 guarantees
the existence of an estimate h which is also essentially bounded. Thus,
it seems unnecessary to weaken the assumptions on h in Theorem 2 to

include h's whose third absolute moments are finite under Po and Pl.
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The importance of bounded h's is also illustrated by the constructive
procedure given by Hannan and Robbins ([7], pp. 42-L3) for obtaining
a uniformly bounded kernel estimate h which is unbiased and minimizes,
for fixed p, 0<p<l, cg(h) given by (8).

However, we present now an example which shows that the enlarged
class furnishes an unbounded unbiased estimate E(X) of § for all
8 € 2_ which is easy to compute when compared to the estimate ™*(x),

given by Theorem 1 and (1.11).

Example. Let X, = (Xal""’xan) be the random variable for the 4
subproblem, For each a = l,...,N, assume Xal"“'xan are n independent
identically distributed random variables having one of two distributions
Gi(') for i = 0,1, Let Gi(') be a normal distribution function with
mean w; and variance 02, for i = 0,1. Assume w; > Wy, Let Pj and Py
denote the respective product measures Gg and G;. Denote by gi(')

and pi(+) for i = 0,1 the Lebesque densities of G; and P, respectively.
Then pi(u) = ng=lgi(uj) for i = 0,1 is the joint density of the n

independent random variables Uj,..., Uy
Observe that pi(u), for i = 0,1 are bounded and we may apply
Theorem 1 and Corollary 2 to obtain a bounded estimate f*(u) =
£*(u, y.e.,u ). By Theorem 1, f*(u) = p y(u) ”p OL”_Q where p. ., (u) =
i n lSl lul lsl
-2
pl(u)-(po,p1)||po|| p,(u). The L, norms and inner product in these
expressions are with respect to n-dimensional Lebesque measure. Simple

linear space algebra therefore yields

o b 1o, 112 py(w) = (pgap1) Polw)
L £5(u) =

HPoH2 l|P1||2 = (PO’Pl)z
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We now compute the norms and inner product in (17). For i = 0,1

Moo

2 o9 / -2 2
(18) Ibin (2n0%) ™" H?=1J_w exp {-o0 (uj-mi) } duy

(21:1/2 o)

where the second equality follows from the transformations

= 21/2 c_l(u.-w.) for j = 1,es«sne Also
J J 1

o ® = 2 2
(pgp,) = (2m6%)™ H?=ld(; exp {(=(20%) 7 [ (ujmu,) "+ (uy-u; %]} au,

2,=n n.n L/.‘°° =2 i1 2
(210°)7 ¢ nj=l [ exp {-0 [uj - E(wo+wl)] } duj

where ¢ = exp {-(20)_2(wl—w0)2}. The second equality follows by complet-

ing the square in u‘j in the exponent of the n integrands. Transforming

. 1l/2 -1 =l
the n integrands in this last expression by vy = 2 / o [uj E#wo+wl)]

Tr1/20)-n n

for j=l,...,n will then yield (po,pl) = (2 ¢’. This result

together with (18), when substituted into (17), furnishes the unbiased

estimate
l/2o)n (l_CEn)-l (

(29) £%(u) = (2n pp(u)-c’p (u)) .

With X = (xl,...,x ) and xa = (xul,...,x )N fonBat=R1t s EaN i)

N an

can be used as a kernel function in (1.11) to give the following

unbiased estimate of 3,

- —Jl. N
(20) £*(x) = N7 ] ) £*(X )

N
= (2nt26)P (12620y1 -1 Za=l(pl(xa)'°npo(xa))

n

N n n
=1 2 2
e N Za=l{exp(c12j=l(xuj—wl) )-c" exp(clzj=l(xuj-mo) W o

n/2 2n)—l 2

where G5 = (2) (1-c and ¢, = -(20 )_l. From (20) it is evident

1

that the unbiased estimate ?*(X) of 8§ is not easy to compute.

However, consider the following unbounded estimate of 8. Let
n N

-1 —_ =1
=n ._1X . and X = i =
ZJ=1 Gynes N Za=lxa. Define h(Xu) (w

Lo
a l_mo) (xa-wo)'
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Then, we have Pg h(Xa) = 8,. Therefore, h(X,) is an unbiased estimate

o
of 9“ =0 or 1. Hence, in accord with (1.11),

i

(21) Bx) = vt T onlxy) = (w-e)7 (X - wy) 9

a=1 a)

is an unbiased estimate of ® for all 6 € Qs The computational
advantage of (21) over (20) is apparent, and this example serves to
jllustrate the usefulness of the weakened assumptions on h in Theorem 2.
The above example can be generalized to any two distributions
P, and P, for which there exists a function ¢ with Pi|;(U)|3 < » and
ai s Pic(U) for i = 0,1,u #w;. Define h(u) = (wl-wo)-l (z(u)-wg) .
Then h satisfies the conditions of Theorem 2 and can be used as the ker-
nel in (1.11). This is the type of estimate suggested by Robbins in [10]
where he uses —;‘—(? + 1), with X = yt 21::1 X , as an unbiased estimate
of © in the compound testing problem where the ath component problem is
testing N(-1,1) against N(1,1) based on one observation X,.
In the next section this generality of estimates is not retained.
The proofs of Theorems 3 and 4 utilize stronger properties of h.
Theorem L4 requires essential boundedness, while Theorem 3 has strong

moment assumptions on h.

L, Convergence Theorems of Higher Order.

Convergence rates faster than that in Theorem 2 are obtainable under
successively stronger sufficient conditions. The following conditions
on the continuity of the induced distributions PiZ_l for i = 0,1 are
pertinent.

(I) Let the induced distributions PiZ'l be continuous functions
on (0,1) for i = 0,1.

il

It is an immediate consequence of (I) that u'Z™" is continuous

(and hence uniform continuity) on [0,1].
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To see this, note that u'z-1(z) = u[0<Z(U)<z, Z(U)<1] implies that
u'Z'l(0+) = dinf,sq u'z-1(z) = 0 = u'Z'l(O) and p'z-1(1+) = infz>l
u'Z_l(z) = u'Z_l(l). These results together with left-continuity of

u'Z-l(z) imply u'Z_l is continuous on [0,1].

1

(II) Let A be Lebesque measure and P;Z”~ be absolutely continuous

with respect to A, for i = 0,1, Let there exist a K' < « such that

=1
P2

(22) (z) £ K' a.es A

dx
It is an immediate consequence of (II) that

17=1
(23) iiE—E——-(z) < (a+b) K! a.e. A,
dx

We now prove with the aid of inequality (13) the following two

uniform convergence theorems for the regret risk function.

Theorem 3.

12 .
Let h e & be such that P; [n(U)-i|* ¢ 27 TS (n)kt o525

k = 2,3,44.,i=0,1, and some q > 0. Then, if (I) holds R(6,tX)- 6(8) =
h

o (N'l/e) uniformly in 6 € Q_.

Proof, We show (i) Ay = O(N'l/2) uniformly in 6 e Q_ and (ii) By and

-1/2)

C, are O(N uniformly in 6 ¢ Q.

N
(i) Let € > 0 be given. Under assumption (I), n'z=1(z) is
uniformly continuous on [0,1] (and hence on R). Therefore, there exists

= o=1 =
a § =6(e) > 0 such that u'27 " [[z1,2,)] £ 8 s € whenever |z2-zl| < &8,

Choose N, sufficiently large such that Iy 2 8(66)-2 {(a+b)3}2, where

=)
- =8 =
o =0“). Let E = {|h-6] 2 6} and observe that by Tchebichev's

inequality,
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(2k) PolE] SNt E o%(h)
< - -
=N = § - 02 .
Consider now the term Ai N H{Peu'(Z-E)[E 2 7<n]1°. Use of the
’
pointwise inequality (2-8)[6 & z <k] £ |n-8|[8 = % <B] in Ai g fol-
]

lowed by the Schwarz integral inequality yields the bound Ai N s
9’
c%(h) Pe{u'[g sz <E]}2. In the second factor of this bound, partition

the space under the Pe integral into E and its complement Ec, noting

- < 8—1/2

that on ES, u'[® S 7<n) = u'Z_l[[e,E)] ¢ , while on E,

A

= El

2 < -1 2
1,8 = ‘8 =

u'[® = z <h] 2 (a+b). Hence, A

Inequality (24) and the choice of N yield for N 2N, A

By a similar argument we obtain A2 N=Nl/2{Peu'(5—Z)[H=§Z <8]} é% oE.
’

1/2,

Observing that N 8= Al,N+A2,N’

the previous two inequalities yield
A £ Ge. Since ¢ is arbitrary, and since both o and No are inde-
pendent of 6 e 2_, (i) is proved.

(ii) Let € > O be given. By uniform continuity of PiZ_l(z) on R,

there exists a 6' = §'(e) > O such that PiZ-l[[zl,z2)] 2 % e2 aE

[22—2l 2 §'. The proof for the term BN relies upon properly bounding

the two terms on the right-hand side of the expression

(25) B =NTa Eaell Ei{lF] pe[i(“) 2 7 <nl}

+i7 e EaeIlPi{(l-m)pe[E(“’ S zi<al) -,

A

Where F = {|z-8| = 6'}. The two terms on the right-hand side of (25)

will be denoted by and B respectively.

BN 2,N

We first bound the Bl N term in (25) by a B-E approximation argu-
’

ment. As in the proof of Theorem 2, we assume without loss of generality

that 02 = ci(h)> 0 and I. is non-void. By a B-E approximation condition-

i 1

ally on u, X ,, and X., iel applied to ath summand in B we have by
o i o Ll
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(15) and (16),

8'(0)o] PPy [n(U)-n(x,)|[Fl+2ga P} [F])}.
Qa

Weakening in (26) by the Schwarz integral inequality to obtain

1/2 v/ . :
PiPealh(U)-h(Xa)|[F] Sz cl{Pi[F]} , observing that our choice
of &' implies that Pi[F] : 52, and sunming (26) over all o € I;, the

definition of By y and inequality (14) yiela
’

(1) v/28, o < ae® ni/2 % min{l,(Nﬁll)‘l/2(21/2§'(o)e‘l

na

+ 2BalH

wm

ae(e+21/2§'(0)+28ale).
Since € is arbitrary and the bound in (27) is independent of 6 e Q,, we
have
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(28) lim N B

- 1N " 0, uniformly in 6 € $4.
ol t]

We now bound B, y in (25) by Bernstein's exponential inequality
t]

given in the following theorem (see [2] for proof).

Theorem: (Bernstein).

Let Yl, Y2,... be a sequence of independent random variables with
k =
af = Var(Y;) and such that PIYi- PYiI SHo=L cfk!qk 2, for k = 2,3,.00}
s e T 2 _n 2
i=1,2,..., and some q > 0. Let S = Zi=l (Y; - PY;) and s7 = ]/, of.

=1,-1
Then, for any t > 0, P[|Sn]>tsn] < 2exp{-(2+2qtsnl) 2}

Before using this theorem for bounding By | observe the following
’
set inclusion,
{|z-8] > &', E(a) <Z<h}

C B8 UEY Fesy .

Substituting this set inclusion into B2,N and observing that a simple
a)

change of variable implies PePi[g( -6<=8'] P9[3;3<-6'] for all a e I,
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we obtain B, = aﬁbe[|ﬁlﬁl>6']. Application of Bernstein's inequality
7 |
to this last expression gives

B

A

o < 288 exp(-N(6)2(205(n) + 208")7")
hg-T exp{—N(G')z(ng(h) + 2q6')'l} .

This exponential bound is independent of 6 e &, and hence

1ixn1\‘_ml‘1:l'/21:\2’N = 0 uniformly in 6 € Q_.

This last result together with (28), when substituted into (25)
. -1/2 :
implies BN = o(N / ) uniformly in 6 € Q_. A similar argument holds
for Cy amd (ii) is proved. The theorem now follows by (i), (ii), and

inequality (13).

If the estimate h is essentially bounded by M, then the conditions
of Theorem 3 are met by taking q = 3-1M. The estimate h in the example
following Theorem 2 is an unbounded estimate satisfying the conditions

of Theorem 3.

Theorem L.
Let h e & and |h(u)| £ M ace. w. If (II) holds, then

R(0,t%) - ¢(8) = o(n~1) uniformly in 8 € 2.
I

Proof. We bound the terms Ay, By and Cy in inequality (13). Expressing
the term AN in the integral form below and bounding in accord with (23)
(which flows from assumption (II)), we obtain a uniform bound for Ay as

follows:
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7 il

= (z) dz
da

Py f1(2-8) ([8L2<h] - [hea<t])) &

=
=
|

nAa

(a+b) K'Pq f(2-0) [652<h] dz

2
NL(at+b) sK'OEKh)

= N'l(a+b)%K'32(h) .
The term BN can be treated in a similar manner after first bound-
= = - = =
ing Ty (n(u)-h(x )N 1 from below by n-2MN~— for each & € I, and

then use assumption (II) to obtain,

By = 86PyPi[h-n"1(2M) £ Z < h]
-
f— — - 1
= aopg {m-nt(am) £ z < 7] F12 7 (2) az

nA

1 2aKk'M .

In a similar manner, one has Cy £ vt 2vkrm.

Substituting these three upper bounds for Ay, By, and Cy
respectively into inequality (13) yields an upper bound on the regret
-1
risk function for t¥ given by I~ (a+b) K'(c2(h) + 2M). Since this

h

bound does not depend on 6 € Q the theorem is proved.

R ]

5. Examples Satisfying Theorem 3 or L.

Two examples satisfying each of the Theorems 3 and U4 are given.

Example 1.

Let U = (Ul,...,Un) be the generic random variable for the uth

problem. Assume Up,...,U, are independent identically distributed as
either G (t) = 1 - exp {-mot}, w0, t 2 0 or as Gi(t) = 1 - exp {-wjt},
wy > 0, t Z 0. Furthermore, assume that w, < wj < 2wy, Let gy(t) and
gl(t) be the Lebesque densities of G (t) and Gl(t). Then Z(u) defined

by (2) is given by
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Z(u)

bf ()

n
it
B 8oluy)

n n
a1 ey(ng) + o I Eoluy)

= = -1
= {apt (mlwol)n exp {(wg-w;) 2§=1 uj} + 1} s
The induced distributions PiZ'l(z) for i = 0,1 are given by
—1L =R < __n n 5
PiZ (z) = wy jﬁZ(u) z] exp {-u; Ej=l uj} nj:l duy . Transforming
this multiple integral by v, = Zg=k ujs k = 1,..4,n, which has
Jacobian 1, followed by integration on the variable Vp,Vp_]sec+sVp

yields for i = 0,1,

wy-w )"tz (2)
(29) Piz'l(z) = “2 r=3(n) JCT 1o vg'l exp {-w;vy} dvy

=1 -
where t¢(z) = log {(wlw;l)n ab z(1l-z) 1y . For i = 0, transform this
integral by means of the transformation vy = (ml-wo)‘l;(w) to obtain

-1 1
pzt(2) =y /:(1-»:)(“1'%) (2wgy) (womwn) ™ unp () n~tay

! (w1=wp) ™t
'l)wo(wl wo) }n (ba_l)wo wl=wg

where C = F"l(n){mo(ml—wo)_l(moml

=

Gl n n
and C = bw_ (awl + bug

This integral expression immediately implies that POZ'l(z) is
absolutely continuous with respect to Lebesgue measure A, and we may
define the following density

dPOZ“l (wl-wo)"l(zwo-wl) (wo-wl)'lwl

(30) "7;;'_ (z) = Co(l-z) z [c(z)]n-l

if C = z < 1 and O otherwise.

Observe that the assumption 2wy > w) > Wg implies that the factor
(l-z)(wl'mo)-l(zwo'wl) dominates the density (30) as z > 1 and hence
density (30) approaches 0 as z > 1. This result implies that density

(30) is continuous on the closed interval [c,1], and hence the density
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(30) is bounded on the closed interval [c,1] (and therefore on [0,1]).
In a similar manner, it can be shown that
=i =il =0
dpy2 wo(wy=w) ™" (w=wg) " (wg=2u;) .
(31) — (z) = cq(1-2) z [z(2)]
dA

a3z (o] : z < 1 and O otherwise, where

-1 n

_1)wl(w1—wo) } (ba-l)“l(wl'“o)_l

P_l(n)(wl(wl-wo)-l(wowl

@ = :
An argument similar to that following (30) shows that density (31)

is bounded on [0.1]. Note that the assumption 2w, > w; is not

necessary in showing (31) is bounded on [0,1].

Since (30) and (31) are bounded on [0,1], assumption (II) is

verified and Theorem 4 holds for Example 1.

Example 2.

Same as Example 1 except assume that w) - 2wg. Observe that the
density (30) now approaches » as z * 1 and, hence, is unbounded on
[041]. Therefore, the assumptions of Theorem 4 are violated. However,
assumption (I) and, hence, Theorem 3 holds in this case by merely
noting that (29) implies that PiZ-l[Z=z] =0 for i = 0,1 if

¢ Sz <1 (and therefore if 0 < z < 1),

Example 3.

Let U = (Up,...,U,) be the generic random variable for the ot

problem. Assume Uj,...,U, are independent identically distributed as
either Gy(t) or Gy(t), where G;(t), for i = 0,1, is a normal distribution
function with mean w; and standard deviation 0., Assume wy < wge

Let go(t) and g1(t) be the Lebesque densities of Go(t) and G1(t). Then

z(u), defined by (2), is given by
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Z(u) = bf (u)
n
5 b Moy goluy)
T n n
B e B T &luy)
= {ab'lcl exp {co 2§=l uj} 1 .

where c) = exp {n(202)'1(w§-w§).} and cp = (wl-wo)c'2 < 0.

Therefore, since 23=1 Us

distributions PiZ'l(z) for i = 0,1 are given by

is the sum of n independent normals, the induced

PiZ'l(z) = Pi[EUJ < cgl log ((aclz)'l b(1-2z)}]

¢;(z)
/F . 3'(t) at,

U -ao

where ;i(z) = (nl/zo)"l{cgl log ((aclz)'l b(1-z)} - nw;} and

6'(t) is the density of N(0,1).
For i = 0,1, transform the integrals by t = ;i(w) to obtain PiZ'l(z) =
Jizi’(ci(W))l;E(W)ldw. This integral expression immediately implies
that PiZ'l(z) is absolutely continuous with respect to Lebesque

L2 IR

measure A for i = 0,1 . Since |;i(z)| = {n
the induced Lebesque densities are given by
-1

(32) fE%i}__(z) = {nl/2 cvlc2|z(l-z)}_l 3'(g;(2))
if 0 < z < 1 and O otherwise for i = 0,1.

From the definition of t;(z), we see that ;i(z) + -» or = according
as z » 0 or 1, Hence, §'(;i(z)) + 0 at an exponential rate as z > O or 1
and thus 3'(z;(z)) is the dominant factor in (32) as z > 0 or z + 1.
Therefore, (32) » 0 as z » 0 or z > 1, for i = 0,1, Since the densities

(32) are continuous on the open interval (0,1), the above argument shows

that the densities (32) are continuous on the closed interval [0,1].
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This in turn implies that these densities are bounded on [O,l].

Assumption (II) is thereby verified and Theorem 4 holds for Example 3.

Example L.

Let U = (Up,...,U,) be the generic random variable for the ath
problem. Assume Ul""’Un are independent identically distributed
random variables having distribution either G (t) or Gj(t). Furthermore,
for i = 0,1 assume Gi(t) is absolutely continuous with respect to
Lebesque measure and has density g;(t) = c(wj) exp {wiT(t)} h(t)

where T(t) is strictly monotone in t. Then Z(u), defined in (2)

is given by

z(u) = bfg(u)

{ab'l{c(wl)c-l(wo)}n exp {(wy-wg) Z?=l T(uj)} + i}'l ;
Note that the induced distributions PiZ'l(z) for i = 0,1 are such that
(33) P27 [z=z] = P3(]],; T(U;) = c(2)]
for 0 < z < 1, where

t(z) = (ul-wo)'l log(a‘lb(l-z)z'lﬂc(wo) c'l(ml)]n .
With the aid of (33) we will show that PiZ'l is continuous on (0,1) for

i = 0,1, and hence Theorem 3 holds.

Let V(Up,e.e,U) = 2?=l T(Uj). The measurable transformation V

from R® into R induces a probability measure PiV‘l, for i = 0,1, such that
(3b) P;i[]15=1 T(Up) = t(2)] = PyVHV = 2(2)]
for 0 < z < 1,

Note that PiV'l(v) is the distribution of the sum of n independent
random variables Tl,...,Tm, where Tj = T(Uj), Jd = lysesyis Each of
n random variables Tj has, for i = 0,1, continuous induced distribution

functions PiTsl(t) = Pi[T(UJ) < t]. Continuity follows since strict
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monotonicity of T(+) implies that I>i'1‘31['133 = t] = py[r(vy) = ¢]
= Pi[UJ = T'l(t)] = 0, for i = 0,13 § = 1,es0,0. Therefore, we conclude
that PiV-l(v), as the convolution of n continuous distribution functions,
is continuous, for i = 0,l.

Hence, for i = 0,1, we obtain that PiV‘l[V = ¢(z)] = 0 for all
z in (0,1). This, in turn, implies by (33) and (3l) that P;z~}[z=z] = 0
for i = 0,1 and z ¢ (0,1).

We have now exhibited a whole class of distributions for which

assumption (I) and hence Theorem 3 are verified.



CHAPTER III

CONVERGENCE ThEOREMS FOR THE GENERAL
FINITE COMPOUND DLCISION PROBLEM

1. Introduction.

In this chapter we shall extend Theorem 2 to the general finite
compound decision problem of Chapter I, where the component problem
has finite m x n loss matrix (L(i,j)). Counter-examples to the ex-
tensions of Theorems 3 and 4 are given. However, under a certain
restriction on the loss matrix (L(i,j)), a theorem analogous to
Theorem 4 is proved.

In Chapter I, we proposed the non-simple procedure t% defined
by (1.12). To facilitate asymptotic study, we express the regret
risk function of tﬁ in the form (1) below. Let p(6) = (po(e),...,pm_l(e))
for 6 € Q, be the empirical distribution of Q. Recall that T p(8)
given by (1.8) with £ = p(6) is a simple decision procedure Bayes
against p(6). Hence, by (1.4) and (1.5) we may express ¢(p(6)) =
R(6,t5) = (p(e),P(té)). Laentify t, = % in (1.15) of Lemma 5 and

subtract the above term from the first term on the right-hand side

of (1.15). Since Corollary 1 yields (p(8),e(tg) - A(t

p(e)
(p(6)-h, A(tg) - p(t ( g))» we then have
& R(6,t5) - ¢(p(6) = Py(pn(6)-h, o(tg) - o(t;(e))
il N kJ ;
+ N a_l sz L, PePe th( ) (Ut (V).

When applying inequality (1) the first and second terms on the right-

hand side of (1) will be denoted by Ay and By respectively.

38.
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ElEy:

2. Uniform Convergence Theorem of o(N~

The following theorem generalizes Theorem 2 for an arbitrary

m x n loss matrix.

Theorem 5.

If he é? and hy e LB(Pi) for i,j = Oys.s,m-1, then

N-l/2)

R(B,té) - ¢(p(8)) = of uniformly in 6 € Q.

-1/2)

Proof. In inequality (1) we show: (i)Ay = o(N uniformly in

8 e @, and (ii) By = O(N-l/2) uniformly in 6 € 9.

(i) By the Schwarz m-space inequality, we have,

i Pel(p—ﬁ,o(tl—;) - o(t;)|
1/

2 - ' '
¥'7 Pl b-pl () = (eIl

~
o
n

nA

Let L; = min; L(i,Jj) and ii = max, L(i,j) and note that

J
< ==
-Li SeRanpeso = Li‘ Then
i i 2 a m=-1 . ) }2
(620) lo(tg) = ot = zi=o {p; (tg) - o, (tp)
m-1
S - 2
5 zi=o (Li L)

“E = L._”E, where

T= (io""’fm-l) and L = (go,...,gm_ ).

Also, note that by the Schwarz integral inequality and Lemma b,

1/2 2.1/2 <

(4) w2 p F-pt o] e s
Inequalities (3) and (4), when substituted into (2), imply

/e A, fc|f-L

C.

A

(e, [-p(0)]|

. Hence, (i) is proved.
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(ii) Let To= {a]|6, = i}, i = 0ys0s,m-1. Let r; be the rank
) under the distribution

kJ
P, i=0,..u,m-1. Fix i, j, ky k< janda e I;, and let d = L ()

of the covariance matrix of h = (ho,...,hm_l

and 1x3 = tﬁ(“),k(“) tE’j

basis for the subspace of L2(Pi) generated by the functions é@ -6

(u). Let h - e; = TZ with Z2 an orthonormal

2i?
where €, = (8 ETRTFUN i) and §,. is the Kronecker §. Abbreviate
oi -1,
|E'd“-l T'd to g, where T' is the transpose of the matrix T.
Observe that Z , as a linear combination of the functions hj in

L3(Pi), is in L3(Pi), £ = 1,.00,r;. Also, since (z£|1 = 1yee,rg)

is a set of orthonormal functions in L (Pi), we have,

2
(5) P;(2,e)° = |lel® = 1
and,
2
(6) pillzl® = r,.

We note that since nkj £ [0 < (R,d) = (E4B(“),d)], lkj + zjk

+ Ejk # 0 and Np; > 1.

#0
implies L 0 and T'd # 0. Suppose lkj

Then, conditionally on u, x, and all X W ¢ Ii’ the sum

zw#a,weli(z(xw)’g) falls into an interval of length ](Z(xa)—Z(u),g)l.

Hence, a B-E approximation tc this conditional probability of Ekj + ijk
-1/2
yields a bound, (Np,-1) / {2'(0)[(2(x )-2(u),e) |+ 26Pil(z,g)|3}.

after simplification by (5). Taking the bound on this conditional

probability to be 0 if Ekj + Ejk =0 and 1 if Npi = 1 and weakening the
Pe x Pi integral in this bound by the Schwarz r -space and integral in-

equalities, the triangle inequality, and (6) used to obtain

/2 1/2
PePiI(Z(Xu) - 2(U),g) | = PSPi”Z(Xa) - z(u)|| s 2{PiHZH2} =22 r s
we have if Npy z I
< -1/2
(7) PePi(IZ.k‘j + ljk) = min {1(Np; - 1) Ci} s



L1,
e 1/2 2| s :
vhere C; = 3'(0) 2(r;)""" + 2 gp;zll”. 1fr; =0, (7) holds with
C; =0and 0 * = =0,

Observe that inequality (2.1k4) implies that

o l|-1/2 pi1/2 5)1/2

1/2

- <
N p; min {1,|Npi ar b= (L+cC for all i.

. m-1
Hence, since zi=o p; = 1, we have by the Schwarz m-space inequality

et o
(8) 1 N p, min {l,lei-ll
i=o

-1/20i} S (m +||c||2)l/2 .

N kj
+ 2 k), we see that

< =1
Noting that By = N L. B Pr (g
N za=l zk<j l ea ¢} ea kJ J

(7) and (8) imply
1 n
@ W () La s B,
2
kJ
e
3ds
Equation (9) implies (ii), which together with (i) and inequality

where L = max

(1) completes the proof.

3., Sufficient Conditions for a Theorem of Higher Order.

In this section we shall examine certain sufficient conditions
which allow a generalized analogue of Theorem 4 in Chapter II. Two
types of sufficient conditions are imposed: a certain continuity
assumption relating to the class of probability measures {Po,...,Pm_l},
and a condition on the m x n component loss matrix (L(i,j)). The
continuity assumption is a "natural" extension of the sufficient
condition (II) of Theorem U4 in Chapter II. That an additional condition
is needed on the loss matrix will be illustrated by two examples.

Consider the following example, which illustrates that, regardless

of what continuity assumptions are imposed on a class {Po,...,Pm_l}
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satisfying a mild regularity assumption (see (9) below), a uniform
N-l/2)

convergence theorem of rate faster than o( is unobtainable for

a certain loss matrix.

Example, Let n =2 and h = (hg,eeeyh 1) € & such that hy e L3(Pi)
for i, = Oyess,m=l. Let I = (I+,IO,I_) be a proper partition of

10
{0y4004,m-1} according to Lio >, = or < 0. Define wu(v) = (L7 h(v),f(u)).

lote that w € L3(Pi) for i = Oyss.,m=1. Assume there exists i e I,

i er, L) I such that,

2
> >
(9) P, [ci (wU) 0] > 0.
Without loss of generality, we may assume i' € I . Existence of a
class {Po,...,Pm_l} satisfying (9) can be assured by taking common
support S = {ulfi(u) > 0} for all i, and noting that under this
assumption condition (9) is equivalent to Ll # LO.
1/2

Consider now 6 € Q_ such that 0 < y < N P.4$86< > and

pi =1 - pi, for all N sufficiently large. Fix o such that eu = j!

and define the set E = {EN Wy (xl) < 0}. Define sg(u) = Np; 012(wu)
=1 o
2 o -1 10
+ (Npi,-l) o4 (wu) and KN(u) = =i (u) {wu(u) + (Npi,—l) L fi,(u)} 5

Then, by a b-E approximation applied conditionally on )((x = u, we have

(10) PolEIX, = u] 2 Yp(u)
where Y (u) = (K (u)) - Bs§3(u) ZE#aPSEIWu - anquB.

Note that on {u|012(wu) S (o)) N_lsﬁ(u)‘~¢oi2(wu) > 0, and hence
on this set lim K (u)>C(u), where C(u) = -8 Lil? £, (u) c;l(wu). Thus,

X . + > . -+ . . :
since lim Y = (lim YN) and ¥(+) is an increasing function, we have

(11) Lim Y(w) 2 §(c(w)) on {0,%(v ) > 0} .
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Therefore, Fatou's Lemma, (10), and (11) imply,

im P, P [E[X, = u]

—_—

(12)  umP[E) =

.
Fin B [E|Xa =] 2 ¢,

v

where C = P., [ci2(wu) > 0] ¥(c(u)) > o.

Finally, since Llois optimal against both i and i', we see that

: 1/2 '
(13) v NE{R(e,5) - e(p(e))}
DI G o o 10 !
= lim N s PeLea 0,1 %)
2 B4 Li? P lE]
Zy Li? ¢ > 0.

Inequality (13) contradicts the possibility of a uniform

convergence theorem of order greater than O(N_l/z) in the general

finite compound decision problem with arbitrary loss matrix.
Consider now the following condition (C) on the loss matrix
({8,300 4 Tete T, o = (i|L‘i‘J = 0}. The condition is:
(C) For all j,k (J#k) and i € ij, there exists an

¢ = 2(i,j,k) such that ng > 0 and Lifg 20on I

Note that condition (C) is violated in the example above for

all i € Io. With this added restriction (C) we will obtain a uniform

convergence theorem for the regret risk function of O(N‘l). The

sufficiency of (C),together with the continuity assumption (II')
(or II") below,will be seen in the proof of Theorem 6. A certain
degree of necessity for this condition is shown by the above example

and is demonstrated more clearly by the example in section 3.5.

We mention here three important cases in which (C) is satisfied.

All three cases are concerned with the discrimination problem in which
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m=n and L(i,j)=0 or >0 according as i=j or i#j. The three cases are:
(i) Let m = 2 or 3., This case reduces to the problem of
Chapter II for m = 2.
(ii) Define L(i,j) = a(l-éij), where dij is the Kronecker 6.
Condition (C) is satisfied by choosing 2(i,j,k) = i.

(iii) Let w(t) be a strictly increasing function on [0,») with

) K ) e
w(o) = 0. Define L(i,j) = w(|i-j|). Since LiJ = 0 for j # k implies

i>jandi <kori«<jandi >k, condition (C) is satisfied by
choosing 2(i,j,k) = i.
We now examine the sufficient condition to be imposed on the

class {Po,...,Pm }. Let u be some dominating measure for the Pi's

i

and define f = (fo,...,fm_ ), where £, is the density of Pi with

o

respect to p. Let Pif-l denote the probability measure induced

under the measurable transformation u - f(u). Note that Pif_l is a
s m oom mi :

probability measure on (R ,B ), where B" is the o-field of Borel

sets on Euclidean m-space. Let Xm denote m-dimensional Lebesque

measure., Define bj in 23“, J = 0yee0,m=1 as

T <
(14) By = By(v,a,b) 200 % (v,r) £ a, Oéfjéb, 03r K, i#)},
>
where |v| =1, a=0, b 2 0. Consider now the following condition on
{Po,...,Pm_l}:

(II') There exists a measure y dominating the Pi's and finite

nA

constants K, K' such that Pif_l[bj]

i,j,Vsa, and b with vj(b—K) = 0 and Bj of the form (1k4).

K'A [B,] for all
m- g

This condition is by no means an obvious generalization of

condition (II) of Theorem 3. liowever, let P, = zm;io P, and let

Zi(u) be the density of P, with respect to P.e Define Z as the
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(u)) and PiE -l the

measurable transformation u + (Zy(u)seeesZy
induced measure on (R 'l, 43m-l) under Z. Let A, denote m-1
dimensional Lebesque measure. Then we can state the following "natural"

extension of condition (II) as:

(II") For i = Ogeee,m=1, PiE = is absolutely continuous with
respect to A, and for some K" < o,
a PiZ et :
(15) S
dA
m-1

Condition (II') is seen to be equivalent to condition (II) of
Chapter II by observing for m = 2, Pi[Z(U) <z] = Pi[Z(U) o @l
where C(z) = {b + (a-b)z}-lb(l—z) and Z(u) is defined by (2.2).

It can now be seen that condition (II') generalizes condition (II)
in the sense that condition (II"), which is equivalent to (II) for
m = 2, implies (II') when w = P. in (II'). For the proof of this
statement, see Appendix 1.

We now give an example which fulfills condition (II').

Example, Let U = (Uo""’Um-l) be the generic random variable for

the component problem., Define, for i = 0,...,m-1, the probability

measures P, having densities with respect to A given by fi(u) =2u

if u e [0,1]™. If we let Pif-l(fo,...,fm_l) be the distribution
function corresponding to the induced probability Pif-l, then

-1 _ ,=(m+1) -1 m -1
BEeE G e (1= 2 (n’;=0 £,) f onfe [0,2]%. Hence, E.f

is absolutely continuous with respect to A" and has Am—density

-m m+l

27 f, on [0,2], which is bounded by 2~ on [0,2]". Therefore,

e B Pif-l[B] S k' A_[B] for all Borel sets b on RY;
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and, hence, in particular for the sets Bj of condition (II') with
K= 2,

This example may be generalized. Let Pi be a probability measure
on m-space with Am—density gi(u). Choose, if possible, a measure M
such that P, << u << Am with h(u) as the km-density of W and such that
u > f(u) = g(u)/n(u) is a 1-1 map from {u|f(u) # 0} into [O,K]m having
Jacobian J(u(f)/f) with h(u(f)) J(u(f)/f) bounded by K. Then, on

the range of f, we have

-1
i e (f et ) = £ (u(E)n(u(E)I(u(£)/2)
d Am 0’ m-1 i
5 K K <
= g .
- <
But (16) implies that P f l[B] = K K, Am[b] for all Borel sets B on

Rm; and hence, in particular for the sets Bj of condition (II').

In the example given above, W = Am’ h(u) = 1, and gi(u) = fi(u)

=9 uy for u € [O,l]m with K = 2 and KO = 2™™, Another example in
5 . . . _ nm-l b
which u plays a more dominant role is with h(u) = 2 u,, gi(u) =

JEo ]
n-1 -1 | m )
2 3y H?=o Uy and fi(u) =27 3u forue [0,1]7, and with
il

K. =4 3™ ana k=27 3,

L., Uniform Convergence Theorem of O(N—l)

Before stating and proving Theorem 6, we shall prove the

following useful lemma.

Lemma 6.

For sets B, = B,(v,a,b) of the form (14), AnlB;] S

i £ v | <
J



Wy
Proof. Let & # j be such that lvl| = 1. The lemma follows from

the transformation = (v,f) and y, = £, , k # £, which has unit
Yy J T

Jacobian.

Theorem 6.
If (C) end (II') hold and h ¢ & such that |h, (u)] S Mae. p

for i = 0y44.,m-1, then R(e,tﬁ) - ¢(p(0)) = O(N-l) uniformly in 6 € Q_-*

Proof. We show in inequality (1) that: (i) Ay = O(N-l) uniformly

in 6 € Q_ and (ii) B, = o(v"!) uniformly in 6 ¢ @ .

N

2 s — ! ' . .
(i) By noting ((pi - hi)Li’ tE(u) - tp(u)) is the difference

of two simple functions, we see that the first term on the right-hand

side of (1) can be written as
(17) Ay = Polp-h, oltp) - ot ) = Zj#k D (kyd),
m=-1 9
where Dy(k,j) = Py Zi=o (pi-ﬁg)ng P.t—  (U) t' .(U). Without loss

i h,k Pyd

of generality, we may assume p; 2 0 for all i = O,ses,m=1 in AN’
1
. : = - - U =
since, if p;, = 0, the term pi(pi(th) pi(tp)) 0 could be

eliminated prior to use of Corollary 1 in (1).

Fix i, J, k, and observe that for & = Oyeeeym=1,

(18) tl (u) t' (u)
h,k P»J 4

3 - i0
<[0;(kaJ’f(u))émZLK”p—hHJ[zisijpiLi fi(u):ziilkjpiLiin(u)].

Consider the following two cases.

Case 1. Let maxiél p; 2 m-l. Bound the second factor on the

kJj
right-hand side of (18) by unity and note that condition (II') and
. kj -1 kJ
Lemma 6 applied to the remaining factor with v = Jen 7 o s

an= |ka‘j|_l ml/2 LK “P—H|| and b = K yields
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' < m-2
P.t= (U) t' (U) =a bk K"
(19) (5 (0
< —
P hm ”P"hH ’
it 3o -1 .m : St kJ K o
where K =n™ " L L)” K K' with Ly = min, , o i [ s #88
Case 2. Let 0 < maxi'fIK p; < m-l. Then there exists an
J ‘o >
w e I, such that p A Therefore, by condition (C), Lie =10
J

on IkA and le > 0 for some &. For such an %, we have
J w '

J2 z oot 20 ang jpX) S I i ror i1
ZislkjpiLi £;(u) = p L °f,{u) =0 an g I g 0 kJ
Hence, the second factor on the right-hand side of inequality (18) is

j - kJ 5 A
bounded by [0 = prilfm(u) 2 (m-1)L L01K|pL J|] . with this bound
in (18), condition (II')land Lemma 6 applied to Bw(v,a,b) with

R ) .
v = [pt*d|™ pr¥, & = uLk ||p-k]| [pL® |7, ana

b= (p, Lil T (mel) & Lal K [pL*| , we have

' < m=2
20 P. t- (U) t' .(U) = ab K Kt
(20) L ) 5ol )
< -
S ko ol
where K' = m3/2(m-l)(L Lal)2 K™ K' is obtained by noting that
Jr > -1
P, Lw m LO.

> >
Observing that Ké = K for m = 2, substitute the bound in (20)

into the term DN(k,j) for both case 1 and case 2 to obtain with the

< -
8id of the Schwarz m-space inequality D (k,j) = m®/° L K! Pe“h-pH2.

)ml/2

N
< -
Hence, Lemma 4 and equality (17) imply AN = {n(n-1 LK&Ce}N l,
from whence (i) follows.
< = kj -
(ii) Fix i,J,k and define E = {0 = (L™ ,r(u)) = ol L
< =_ 3

FE-(0=(MJ,NM)},1=O“.”ml,mdal=2m&L Note that
by the definiti i v ! X

yikne detind eionioripl Oy (u) and tﬁ,j(u) we: have ()i

< h sk h »k
= [E] [FL] for a = 1,...,N. Hence,

i
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(21) N (u)

kJj ' '

Y s ToSRPRRTRE (u) t

ael, 70, " ® 8, H(a),k P»sd
Kj !

|piLi | BE. (] [F,].

We now consider bounding the right-hand side of (21) in two cases.

ShEn = =
Case 1. Let max, P, =m ~. Define the set A={||h-p| £(2m) l}.
i1 i
kJ
Rl ) £
Note that on A, |BL™Y| = LO(2m) , and hence by condition (II') and
Lemna 6 we have, PP, [E][A] = P [A]P [£] = (om L] B e K'a)) vt

Also, we have by Tchebichev's inequality and Lemma k4,

Po(1 - [A]) S £ Hﬁlpne 2 4(wc)® N, Hence, with o, =

2m Lale-lK'al + h(mc)z, it follows that

kJ < -1
(22) IpLy o s D
Case 2. Let max . p; < m-l. Then there exists an w e I .
1¢ij i kJj
such that p Z ol By condition (C), there exists an £ = 2(w,J,k)

such that L9* > 0 ana ¥ Z o on 1
w 5t kJ

na

Observe that |p,LiV] |pi-E;| L+ |E M|, Then, since (II')

and Lemma 6 imply, for |h LkJI > 0, P, [E] s |r Lle-l ¥t where
= =1
a3 = KK a,, ve have
(23) o, 2| B, ((E]F,1) £ LB | P ((EIIF,]) + oy 070,
Py il T8 L 3

With 2=2(w,j,k) and observing that ). iI h Lljf (u )_mLL K|thJ|

and that 2181 (E;—p an (u)s 1/2LK Hp-h[|on F,, we obtain the set

inclusion, F2 C {Oéprilfw(u)é(mLO |ELK3|+ml/2Hp-F||)LK} =

G = {|ELkJ[ < N-l/e}. Then, since |priE| 2ot L, we have on

G, (II') and Lemma 6 implying by the above set inclusion Pi[FE] £

(mLal N-l/2 + ml/zllp—i I mLLBleK', while on the complement of G,
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p.[E] £ K% k'a,n"2/2, Hence, we have in the term P, ([E][F,]) for
it L i
2= 2(w,d,k),
2 5 & -1/2 55
(o) P ([EI[F]) = a N°°'% + a5 [p-bll,
- - B ol
where o) = K = K' {(m Lol)2 KL + al} and o = m3/ L LO K® oK',

To complete the proof for the term By, substitute (24) into the
first term on the right-— hand side of (23), sum the Pe integral of this

bound plus the bound in (22) over all i,j,k,(j#k), and use Schwarz'
m-1

- < _1/2 = :
inequality to bound Z lpi—hil =m / ||p—h" The resulting
i-o
inequality from the definition of BN and inequality (21) is
(25) B S n(n-1) {(La, + may) N1
= - Qa
5 N n(n > m 3

+ /2L R Bopll ¢ ag PRl

From (25) we see that BN = O(N-l) uniformly in 6 € Q_, since by
- — < -

Schwarz' inequality and Lemma L, N L Py [B-p|l = N lC and

B Ill'f-pll2 2 ¢%. Therefore, (ii) is proved, which together with

(i) and inequality (1) completes the proof.

5. Counter-example to Theorem 6 when (C) is Violated.

The example given in this section shows that even in the
discrimination case (L(i,j) >or = 0 as i # jor i = j, and m = n) and
with condition (II') satisfied, a violation of condition (C) prohibits
a uniform convergence theorem of order greater than O(N-l/e). This
example together with the first example in section 3.3 exhibits that

condition (C), although maybe not a necessary condition for Theorem 6,

is at least not an unwarranted assumption on the loss matrix (L(i,j)).
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Example. Let m = n = L and assume (PO,...,P3} satisfy condition (II').
Let h € é? with |hi(u)| S e Nl for 1 = 0,...4,3. Suppose the

component loss matrix is given oy

H = » O
H 2 o ~
H O N -
o+ H

Note that in this example all conditions of Theorem 6 are met
except condition (C) which is violated when (k,j) = (0,3) or (3,0).
As will be seen, the conclusion of Theorem 6 is not true for this
example.

To facilitate construction of the example, choose distributions
with densities fi(u) having common support set S = {u|fi(u) > 0}

2 fa(u) on S.

na

for i = 0,1,2,3, and such that % £,(u) 2 £, (u)
Furthermore, assume that k 2 fl(u) 2 K on S for some constants

KRG 0 i< Bic ScEKE< Hooe

To see that this class of examples is non-empty, let fi(u) =

3'12ui on [1,2]h with u = X), K=3—l2,K=3_lh. Then, S = [1,2]h and

u, 2 2ul 2 hue on S. That condition (II') is satisfied follows by

analogy with the example satisfying (II') given in section 3.3 with m=h.

Now choose 6' € ©_ such that for N sufficiently large,

< < <
o<y 22 p (01) S5 <=, py(8') = 0, ana 2p,(67) + & 2 py(e?)
< i R =5
= 3p2(6') He i< <= 5 By the choice of 6', té(e,)’o(u) =1 a.e.p.

-1 N 3 ko :
el Bl Lecl tg (X,). Note

Hence, R(e',t%) - ¢(p(8'))
that condition (C) is satisfied for k = 1,2 and hence by the proof

of Theorem 6 and the fact that p3(6') = 0, we see
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' ' = g1 0 -1
(26) R(e',tﬁ) - ¢(p(8')) =N Zaelo fbmh’a(xu) + 0(N7).
Fix a € I and define E = [hofO(Xa) - h3f3(xa) < 0]. Conditionally
on X, = u, apply & B-E approximation to the sum Zl#a(hO(xl)fO(u) -

(u)) and let o(u) = m Oi(hO(V)fO(u) —-h3(V)f3(u)) >0

h3(x1)f3

on S to obtain,

SRi=05137

(1) wim BylE [X, = ul 3 B(-67(w) o7 () on s.

Now, observe the following pointwise inequalities:

(28) 0 = [E] - t= 21 - [(H,L3lf(xa)) < 0] [H,L32f(xa) < 0]

h,3(xa)

A
\

w

=

>

nv

£(x ) % o] + [(B,L¥Pr(x ) 2 o],

[, e(x,

Then, with (E,L3kf(xa)) S ||n-p(6")| 12 Kk + (p(e'),L3kf(Xa)) for k=1,2,

k3f(

vwhile our choice of the f;'s and 6' implies (p(e'),L Xa))éef Zek ,

al
we see that (28) together with Tchebichev's inequality and Lemma L

imply
-1

A

(29) 0 = P {[E] - tg 5(%,)) S 2 py[fE-p(e")]| 22 k 2 € «]
where o = 288 (KC)2 (EK)-2.

1 -
- (x ) = PG[E] + O(N l) from whence it follows

Thus, we have Peth,3 i

by (26) and (27) that

(29) 1in 12 (R(6',t5) - o(p(6"))
2y Lin P,Pgr [EIX, = ul
= Y al >0 ,

where ) = P §(=67,(U) ")) > o.

Equation (29) demonstrates that a uniform convergence theorem
of order better than O(N-l/z) is impossible in this discrimination

example wnere (C) is violated.



CHAPTER IV

THE TWO-DECISION COMPOUND TESTING PROBLEM
IN THE PRESENCE OF A NUISANCE PARAMETER

1. Introduction.

We now give a formulation of the testing problem considered in
Chapter II for testing between the parameter values 6 = 0 and 1 in
the presence of an unknown nuisance parameter t = (Tl,...,Ts), 52 A

Let T be a set in R® with non-empty interior. Let 0% = {Pe = 1T} be
’

a family of distributions for 6 = 0,1. We shall assume throughout
this chapter the existence of a o-finite measure v dominating the

families 0)

g» 8 = 0,1,

Consider now the compound problem of making N decisions,
'eu =0 or 1', based on N independent observations Xa’ o= lyeee,yN,

where XOL is distributed as Pe = for fixed t € T. Let the loss

a!

matrix for the component problem be given Dby:

0 b
(1) 8 0>

where b > 0 represents loss due to deciding Pl g when PO A is the
’ £
case and a > 0 the loss for deciding P when P is true.
0,1 1yt

If t is known, the problem reduces to that of Chapter II.
However, we here consider the case where the vector parameter T is
unknown but assumed to be the same for all N problems. We shall give
a procedure which first estimates 1 and 6 based on Xl,...,XN and then
adopts a compound procedure similar to that given by (2.9) in

Chapter II with T replaced by its estimate.

53.
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At this point it seems appropriate to remark on the above
formulation of the problem. Suppose we temporarily consider the
problem where the set T is a finite set of, say, k elements,

T Then the problem reduces to that of Chapter III by

ot esTyye
letting m = 2k with the class 6;>= {Po""'Pm-l} being given by
Pl = PO,rl and Pk+£ = Pl,rl for £ = 0,...,k-1, and by choosing a
2k x 2 loss matrix with L(i,0) = 0 or a according as i < k or 2 g
and L(i,1) = 0 or b according as i 2 or < k, where decision J,
for j = 0,1, corresponds to saying '6 = j'. In fact, in this case
T can vary over T from component problem to component problem. Hence,
we arrive at no new problem unless T is at least an infinite set.
The selection of T as a set in R® with non-empty interior will be
seen in the proofs to follow. The assumption that Tt is the same
for all N problems permits the obtaining of estimates of 1 which
have good asymptotic properties as N + =,
With the formulation of T as a set in R° with non-empty interior
and 1 the same for all I decision problems, the earlier results do
not yield a solution. It is this problem to which we now devote our
attention. We will give asymptotic solutiors (in the sense of regret
risk convergence) in Theorems 7-11.
Before stating the theorems specifically, a few preliminaries

are necessary. Let v be the assumed o-finite dominating measure for

the families ﬂ%, 6 =0o0r l. Fix 1t € T, and denote P E and

- O Wy
PG,T = Xa=l 1-"80”T by Po’ Pl, and Py respectively. Define
dPi
(2) g;(u) = == (u) for i = 0,1,
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Let u = aPl + bPo as in Chapter II and note we may proceed exactly
as in equations (2.1) - (2.8). We shall suppress T in all these

equations except (2.2), where
(3) Z(u,t) = be,(u) = {ag)(u) + bgy(u)}™ bey(u).

Consider now a scalar function h and a vector function
k = (kl,...,ks) such that h(U) is an unbiased estimate of 6 = 0 or 1

and k(U) is an unbiased estimate of t; that is,

(L) Y n(U) = i for i

Py k(U)

n
o
-
[
-

I
-

for 1 = 0,1,
By (4), we then form unbiased estimates of ® and T based on the
observations xl,...,xN for all N, 6 e @_ by defining the averages
— el o
(5) B(x) = 87" ], n(x)),

TR b e O

Observe that by (L), PGH(X) =6 and P k(X) = 1. For kernel functions

6
h, k = (kl,...,ks) such that h, kj € L2(Pi) Bontii =Rt S 1 ol
. 2 = 2 & - 2
define ci(h) = Pi(h(U)-l) and oi(kj) Pi(kj(U) Tj) . For p e [0,1],
3 2 5 !
define oi(kj) =p ol(kj) + (1-p) ag(kj), j=l,e..55. Then by Lemma k4

and its analogue for k, we have

= = =2 -1 - 2 < -1
(6) Py (B-0)% £ S2(m)N T, Pyllktl|” 2 Ce
-2 iy 2 2 - s C2
where 0°(h) = max;_g 1 {ci(h)s and C} = max;_q g Lj-] i(kj).

From the above formulation, it now becomes natural to consider
the compound procedure formed by substituting h(X) and k(X) for 6 and
T respectively in the non-randomized simple procedure given by (2.5)

with 55 = 0. Lowever, since Z(u,t) is only defined AR T ST e
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must "truncate" k(X) to T. Hence, let %' denote a specified truncation
of F to T such that ¥ = k if K €T and if k ¢ T, then k¥ is a point in T
within a distance of N-l of a minimizer of HE - || on the closure of
the set T. A constructive method of truncating when T is a convex set
is given in Appendix 2.

We are now able to present a well-defined non-simple, non-

randomized procedure t' _ = (t!' _ (xl),...,t% i*(xN)) with coordinate
h,k* h,k* ’
functions
X S
(1) t%,i*(xu) =1or 0 as Z(xa,k*) <oz i =NFTNENc BR=8 ERe

The risk of this procedure under Pe will be denoted by R(S,t%,i*)-
Under certain regularity assumptions this procedure will be shown to
have good, uniform in 6 € Q_, asymptotic properties in the sense of
regret risk convergence.

Certain assumptions will be needed in the proofs of Theorems T-11.

Let 1t € T be fixed.

Assumption (Al): There exist functions h and k = (kl,...,ks)
such that (4) holds and h, kj € L3 (Pi) Toy 10 =F OIS S I = N S

Assumption (AE): The covariance matrix of (h’kl""’ks) under
Pi’ denoted by Vi, is of rank s + 1, 1 = 0,1.

When they exist, define

92
' T —
(8) Zj(u,r) T
ARLE, ¢
" 9Z
and Z (u"[) T e— I
) .
Jk TJQTR

" 1 "
If s = 1, denote Zi and le by Z and Z respectively. Also, let

55 = {1 e ks| [ - <] < &}
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Assumption (B.): For some 8 = §(t) > O and for almost all

1

u(v), Z(u,t) admits continuous first-order partial derivatives (rela-
tive to T)for non-isolated points t'e S /) T. Furthermore, there
exists a function M; € Ll(Pi) for i = 0,1 such that |Z3(u,r'ﬂ =
Ml(u) a.e. v on Sé @ fora g =ul 00, S,

Assumption (BE): For some 6§ = §(1) > 0 and for almost all
u(v), Z(u,t) admits continuous second-order partial derivatives (rela-
tive to T) for non-isolated points t'e S6 M\ T. Furthermore,

PiIZB(u,r)l < = and there exists a function M, ¢ Ll(Pi) for i = 0,1

2

such that lzgk(u,T')l 2 M. (u) a.e.v on 8 T for Bk =Ry 5

A

2. A Convergence Theorem in the Presence of a Nuisance Parameter.

Theorem T.

Let T be any interior point of T for which assumptions (A,),

il
(- (2/2)%ey

) hold. Then, R(8,t+ =) - ¢(8) = O(N for

(a,), and (B e

2

g » 0.

Proof. Since tis an interior point of T, we assume, without loss of
generality, that the 6 of assumption (BE) is such that Sé (@

Identify t, = t'  in (1.15) of Lemma 5 to obtain,

{ab £ (l—t (U U)) + b(1-8) PePOt___ (U)}
h,k*

=
RS Pepl(t

1
BN {“I E Pt

LS tE(a)’E(u)*(U))
(u)) ,

b, k*
" (U) - tl
mle) gla)* 5

where Ii = (alea =i}, i = 0,1. Let the three terms on the right-hand

side of (9) be denoted by Ay, By, and Cy respectively.



58.

We establish the theorem by showing that: (i) AN - ¢(8) = O(N_l/z)

-(1/2)+e
uniformly in 6 € Q_, and (ii) By and Cy are of O(N U Vo & = 0

uniformly in 6 e Q_.

(i) Define A

1 = Plal P (1-t1(0)) + b(1-8) P t4(u)} , vhere

1 0"h

>

(u) =1 or 0 as Z(u,t) < or = h. Then express o ¢(8) as

- , -
(10) Ay - $(0) = Ay - $(6) + Ay = Ay e
Observe that with p replacing w' in equality (2.12) and part (i)

of the proof of Theorem 2, we see by (6) that

(11) A - o(F) Syl/2

N (a+b) T(n).

Next consider the term A - A& in (10). Again by a cancellation

argument of the type used to develop (2.12), we may write

(12) Ay - Ay = Py w ((B-2(u,1)) ([E] - [F]) ,

< <

where E = {Z(u,7) < h = Z(u,k*)} and F = {z(u,k*) <1 = Z(u,7)} .

Under the Py x integral subtract and add Z(u,;*) ([E] - [F]) and
bound (8-Z(u,k*)) ([E]-[F]) by IE-BI and (Z(u,k*) - 2(u,t)) ([E] - [F])

by |Z(u,i*) = Z(u,T)[ to obtain
(13) Ay - A% 2 (a+d) Po[-B] + Py Wz(U,E%) - 2(0,7)] .

In the second term on the right-hand side of (13) partition the
space under the Py integral into Gy = ﬂli—(” < 6} and its complement.
By Assumption (52) and our choice of §, expand Z(u,k*) = Z(u,k)

on G, about Z(u,1) in a second-order Taylor expansion and bound 2oy
J

by M2 to obtain
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(14) |Z(u,k*) - Z(u,1)|

e X = =
= |zj=l(kj—rj) ZE(u,T)| s Zk’j [kk 1k| |kj rj[ M2(u)

A

s = ' L [=e
2, eyl lzjtnnl 3 Relf ).

Use the Schwarz s-space inequality in the P, x u integral of the first

]

term on the right-hand side of (14) and inequality (6) in the Po X 1

integral of the both terms to obtain

(15) Pou {|2(U,k*) - 2(u,1)| (641}
e B % Nt ci u (MQ(U)) s
1

_ fys o 2\ E
where a, {zj=l (UILJ(U,T)|) } .

Since |Z(u,£*) = Al z 1, we have by Tchebichev's inequality
and (6),

(16) Py u |2(U,k*) - 2(U,7)| (1 - [Gg])

A

(a+d) 672 Py [|k-1)

A

G 5 ci §t p

Hence, (15) and (16) together with the Schwarz inequality and (6)

L e . .
used to obtain Pe lh-el =N 1/ o(h) imply by inequality (13) that

(17) b= A& S {ia+b) (h) + a; cl) )

uniformly in 6 € §_.

Substitution of (11) and (17) into (10) completes the proof of (5 )e
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(ii) We shall now bound the term BN in (9). Without loss of
generality we assume Ng 2 1. Let 0 < e < % be given. Fix aeIl and
define the sets £ = {||k-t]|3N -(1/2)(d-e)y gpq E =1k “)—rlgN'(l/2)(1'€)},

We shall need the following pointwise inequality:

(18) it (u) - t (u)
o S

2

A

[2(u,E%) <F) (26,8 2 B 1-[]) (1-(B 1)+ [EI+[E ).

We now bound the Pe x Pl integral of the right-hand side of (18).
Observe that by a change of variable and an elementary set

inclusion, we have

(19) P2 ([E] + [B]) = 2 BlE]

nv

J~1/2 N-(l/2)(l-€)].

na
n
UM e 1]

(k-]
199

By a B-E normal approximation to each of the summands on the right of

(19), we have for j = ly...,s,

= 2 L2 -(1/2)( €)
(20) Pe[lkJ-le £ ]
Soq1 - B2 g2 T
S
+28 N’l/Z

bJ(G) .

were b, (3) = oé}(kj){ r, |kj(U)-T_l3 + (1-8) P_ |k, (U)-1,|3}.

J O J
We bound from above the first term in (20) by noting that

1-E(sTYE 2 g2k )) 1 - (s yef2

dgl) since for all 6 € @

2
dj = max,_, {oi(k,) (kj)' Then, by the exponential tail

h
O
[
-
nA Sl

inequality 1 -8(x) £ &'(0) x~t exp {- % x2}, for x > 0, (see Feller

[3], p. 166), we have
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(21) P e c%l(kj))

-1 d-2

St ay exp (-(/2) 70 a5

b.(p). The second term on the right-hand side
e8] Vi -

of (20) is then 0O(2 Bbj N-l/z)

Define bj = max
<
= b,

J
for all 6 € @ . This bound asymptotically dominates the exponential

uniformly in 6 e 2, since bj(g)

bound in (21) and when it is substituted with (21) into (20) for

J = 1,¢004,5 We see that by inequality (19),

— B =1/2 A ;
22) PePl([L] + [Ea]) = O(boh ) , uniformly in 6 e ©_, where
I s
by = 4B 1. by
To bound the Pe X Pl integral of the first term on the right-hand

side of (18), choose N = HO(T) sufficiently large such that

0
N6(1/2)(l-e) <8. Then, by assumptions (b2)’ we may on the set

€N Ez (c denoting complement) expand Z(u,k*) = Z(u,k) and

Z(u;i(a)*) = Z(u,i(a)) about T in second-order Taylor expansions and

bound them from below and above as follows:

s

(23) 2(u,k) 2 2(u,1) + 1 () 2)(u,7) = 7 )
and, Z(u,i(a)) S 2(u,t) + zj=l(£§u)-rj) Zé(u,r) + %—N-l+€ My(u).

Define, w(x,) = (h(xl) = 0 kl(xl) - Tl""’ks(xz) - 1,), for
L = 1,...oN, and y(u) = gl,—Zi(u,T),...,-Zé(u,T)).Inequalities (23)
applied to the first term on the right of (18) together with some

algebraic manipulation now imply that this term is bounded from above

by the function [Fa], where
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(2h) [F] = (5(2(u,1)-8) = 3,(u) = (y(u),wlx,) + Lo g wixy))

< Dperapal () svlay)) $ W(z(u,1) - ) + 3H,(w)

- (y(u), wlu) + lel wixg ))].
o

Condition the Py x P integral of [Fa] on u, x , and X;, & € i

1 o

and apply a B-E approximation, obtaining an upper bound on the
conditional probability given by

(25)  min (1,(88-1)72 (3 (0) 0% (w) + aylux )} + 28ag(u))}

1 2

() Ny (u), aguyx )=o) ;) [y (w) yulu)-w(x, )

where al(u)=ol

2(t) denoting the

(y(u),w)]B, with o)

and u3(u) = 013((y(u).W)) Pl'

variance of t(V) under Pl. Assume for the moment that aly i= 1,2,3 are

integral with respect to Pe X Pl' Then,
a

(26) PP, [F,) < min (1,(88-1)"Y2 (3% + 02)} ,

where of = 3'(0)P.a.(U) and a* = 3'(0)P P.a (U,V) + 2BP a_(U).

1% 0 T es

Recalling the definition of b” and the fact that the function
[Fa] bounds the first term on the right-hand side of (18), we see
that equations (22) and (26) substituted into the Pe x Pl integral

of inequality (18) and summed over all o e I, imply

1

(27) B S a N'l/z{Nl/Z )-1/2 (Neuz+a

. 6 min {1,(N6-1

51+ oo}

Inequality (2.1L) when substituted into (27) with C = Nsaf + d; and
p= [ yields

(28) g = o(n{1/2)+e

N uniformly in 6 e Q_ -
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It must be recalled that equation (28) was derived under the
assumption that a, for i = 1,2,3 were integrable with respect to

Pl X Peu, [ eIl.

(29) 012((y(u),W))

Observe that

ylu) v, y'(u)

y(u) D' y(u),

where I' is an orthogonal matrix, D a diagonal matrix with diagonal
*
elements d., 1 = 1,...,s%1. Let v = y(u)T and Ay = mingd,.

Then,

s+l =
2 v? Al =
g=1 ¢

*
(30) vDv' y(l® A,

Therefore, weakening by the Schwarz inequality for s+l space in the
numerators of ug(u,xa) and u3(u) and bounding the denominators from
below by (29) and (30), we have

* -1/2

(31) )

u2(u,xa) s [|wlu) - w(xu)H (A

-3/2

na

a_(u)

NISIER 3 K MCW

Also, note that (29) and (30) imply

(32) oglw M) )P

s - @ B Ry
since ”y(u)"2 = l+zj=l{53(u,1)} 2 1. Integrability of a, for i=1,2,3
now follows from (31) and (32) by observing that M2s Ll(Pl) by assump-
tion (sz’"wu 5L3(Pl) by assumptions (Al) and the c -inequality (Loeve

[9], p.155), while assumption (A2) guarantees AI >0. This completes

the proof that BN=0(N'(1/2)+5) uniformly in 6¢e®_. A similar argument

shows that C =0(N-(l/2)+e) uniformly in 6¢€ Q_, and (ii) is proved.
N
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The proof is now established by (i), (ii), and equality (9).
Please note that the order here obtained has the factor N+E,
Qs £ 5 %. We were unable, in general, to remove this factor and
obtain convergence rates as good as those of Theorems 2 and 5.
liowever, in two later results (Theorems 10 and 11 below) two
interesting and rather revealing cases where this factor can be

eliminated are given.

3. Examples for Theorem T.

Three examples satisfying Theorem 7 are given.

bxample 1.
. 3
Let T be the subset of R~ given by T =((Tl,...,ts)]zj=lij <
%{l -(s+l)Y), Tj > 0}, where y is a fixea constant such that
0 <y < (s+1)”". UNote that T is a non-empty open convex subset of

S . . . e e
R Fix 1 € T and let the generic random variable U = (Ul""’U2s+2)

have the multinomial distribution for i = 0, 1, P, {U = u} =

2s+2 1 s+l u‘:.| us+li'
1 (I 1)” i -i J
n! ( 5=1 Yy ) Hj=l{(rj ) (Tj + (1-1)y) } , where
2s+2 s+1 1
u; =n and ) By 5 5 (1 - (s+1)Yy). We show that assumptions

J=1 =
(Al), (AE) and (b2) of Theorem 7 are satisfied.

Define the functions,

=il it s+l
(33 alw = (e T e - )+ 2
kj(u) = (en)7t (“j + us+l+j) - % Y font JE=IRA N st
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Then, since Pin = n(t, + iy) and PiUs+l+j = n('r'j + (1-i)y), for

=01 = I sl b oililows|ithat Pih(U) =i and Pikj(U) s
Assumption (Al) now follows from boundedness of |h(u)| and |kj(u)|

Hond ji= 1l S W slby %{{y(s+l)}-l + 1) and %(l-y) respectively.

Assumption (A2) is satisfied since {h, k ,...,ks} forms a linearly

1

independent set of functions in L (Pi) for =0, 1,

A,
To verify conditions (ba), we first define
S

u.-u .
(34) Wluyt) = Pp(w) (Polu))™ =y Ly

1 (L +YTJ

Let W3 and wjk be the first- and second-order partials of ¢ with
respect to Tj and Tj,Tk respectively. The following relationships

then hold:

(35) Wj =YV Cj s
" 1
Mgt = S e e
il =
where Lj(u,t) = {Ts+l(1s+l +v)} (us+l-u25+2) = {TJ(TJ+Y)} (uj'us+l+j)

]
and cjk = ng/ark.

-1 5 Sa
Therefore, by expressing Z(u,t) = (ay+b) = b, differentiating

=

as indicated below and substituting equations (35) in the resulting
derivatives, we have for j,k = l,...,S,

(36) Zj(u,x) =-ab y ¥ gj(aw+b)'2,
2 (uy0) = @b v v (D)™ Ly gyg (au-b) - (awed) gy

2 2
tience, observing that 2 ab y(ap+b) < £ 1, we obtain from (36),

st
(BT lzs(u,t)l — ]le s

il
]Z;k(u,1)| S {lejckl + Icékl} i
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From the definitions of Cj and C;k it is readily seen that

g = M + 172 (2 +y) + 6jk(uj—us+l+j)

Jk Lt pal U s+1

{t.(t. + y))_2 (2Tj + y), where 6jk is the Kronecker 6. Hence, since
J J

< < A
|uj_us+l+jl =n and (21, + y) = 1l-sy, for j = 1l,...,5+1, we have for

Jsk = 1,004,s,

A

+5g ()

(38) le;1 = n (alr ) ;

and

legl 2 n-en) (P(rg,y) + o¥(ry))

where q(x) = {x(x + y)}-l >80 for x >10.
The first inequalities of (37) and (38) yield

<

(39) PiIZA(u,T)I % ny {q(Ts+l) + q(rj)} < », To complete

the verification of assumption (B2) define § = §(1) = z min

-1/2 n

s+1
{Tl,...,TS, s 41

2
=1 :
=1 %y F 2(1 (s+1)y). Define

} , where ]
the hyperplanes hj = {1t e RS| Tj =0} =, shand

S 1. = =~ (1 - (s+l)y)}. These s+l hyperplanes

J=l1J 2

intersected with the closure of T form the boundary of T. The distance

between Mj and T is given by Tj for j = 1l,...,5 and by S-l/2rs+l for

_ s
g = r e R )

J = s+l. Hence Sé C T since T is convex and the radius 6 is half the
distance of T to the closest boundary point of T in the bounding

hyperplanes Hj’ 4 = Lyavegstl.

We now define the function M2. Observe that if t' = (Ti,...,f;)
s+l
s b s i = el
€ 54, then 2 T for j = 1,...,s+1, Where ijl By 2(l - (s+1)y).

Hence, with q(x) a strictly decreasing function on (0,») we have

1
1 2
q(Tj) < q(E rj) fortjh= 1,4y stlls S Thus B define M(u) =

2

2
nygqg, {2ny+ (1-sy)}, where q. = q (1) = ma
0 0

X a(d 1)
o JEI, el s tlaao *

J



67.
Then, by (37) and (38) we see |ng(u,1')lé Mz(u) a.e. v for
Jsk = 1,004,s if 1' € 8. This together with (39) completes the

verification of (B2).

We have now shown that assumptions (Al), (A2), and (B

met for any t € T and hence Theorem 7 is valid for Example 1 with

2) are

any fixed 1t in T.

We now give two examples in which s = 1.

Example 2.

Let U be the generic name for the Xa's. With s = 1 and
T = (0,»), fix T € T. The distribution of U under Pi is normal with
mean i and variance 1 for i = 0,1. Represent kl(u) by k(u) and

define

(40) n(w) =u , k(u) = u’-u.
Then, Pih(U) =i and Pik(U) = 1t for i=0,1, and fixed t. Hence,
assumption (Al) is satisfied, since all absolute moments PiIUlk

’
k = 1,2,... are finite for i = 0,1, Assumption (A2) is satisfied
since h and k are linearly independent and non-degenerate in

Ll(Pi) for i = 0,1.
To see that (52) is satisfied, let v be Lebesgue measure, and

2

note that for i = 0,1, gi(u) =(211'r)—l/2 exp {- (2'()_l (SO0 T

Hence, (3) implies
- =3
(k1) Z(u,t7) = b {a exp 1 M= %) + b} x

We see that Z has first and second continuous partials with respect

to T on (0,*) which are given by
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(s2) Z R 2 e >
1(a exp ¢(u,t) + b exp { - ¢(u,7)})

and

(L3) - - Lab t(u,T)

2T > >
1° (a exp ¢(u,t) + b exp {- g(u,1)})

. Lab ;2(u,r) (a exp ¢(u,1) - b exp {- z(u,t)})

72 (a exp ¢(u,t) + b exp {- c(u,'t)))3
-1 1
where ¢(u,t) = (21) = (u - E)'
-2 <1 -2 =2
Observe that for t real, |t|{a exp t+b exp(-t)} " = Zmax{a™,b °}

2
and t2 {aexpt +D exp(—t)}_2 z % max {a_é,b—z}. hence, from (L2) and

(43) we obtain

(Lk) Iz (u,t)| S vt e,

n
=
-

]
n
(e}

2" (u,1) |

i

where ¢ = max {a_lb, ab ~}. The two inequalities of (44) together

[

with 6 = =1and M2(u) = 16 001—2 imply assumption (b2)' To see this,

suppose T' ESd=((l/2)T,(3/2)T). Then, by (4b4), |2"(u,t")| z ’4(1')_2 <,

n

< 16 c, . Therefore, assumptions (Al), (A,), and (52) are valid in

2

bxample 2 for fixed T € (0,*) and hence Theorem 7 holds for such a T.

bxample 3.

th Vs
In the @~ component decision problem, let X (Xal""’xan)’

o>
n = 2 be n independent random variables, each distributed as normal

with mean Ba =0 or 1, and variance 1t ¢ T = (0,»). With U as the

generic name for tne X&'s, define



(L5) n(u) = u = i z' u, %

L =)

k(u) = (p-1)77 F,_ (u-u’ o,
where k(u) denotes kl(u) of Theorem 7.
Then, h(u) and k(u) are unbiased estimates of i and T under P, for
i = 0,1 and fixed 1 in (0,»)., Defining v as n-dimensional Lebesgue
measure, an analysis similar to that of Example 2 shows that conditions
(Al)’ (A2) and (52) of Theorem T are satisfied for such a t. Hence,
Theorem 7 holds for Example 3 with h(u) and k(u) defined by (k45).

Please note that in Example 3, we have "bunching" of observations
on each component problem; that is, we make n, n 2 2, independent
observations for each component problem. This "bunching" is what
allows obtaining the stronger result for this example via Theorem 10

below,

4, Uniform Theorems in the Parameter 1 .

Two theorems are presented in which convergence of the regret
risk function is made uniform in 1 € C (as well as in 6 € Qm), where
C is a suitably chosen compact subset of T. Also, it is shown that,
in Example 3 of section 4.3, uniformity in T on (0,*) cannot be obtained

for a wide class of sequences 6 in Q_.

Theorem 8.
Let T be a non-empty open convex set in R° and let C be a
compact subset of T. Assume that (Al), (A2), and @2) hold for all

Tt eTand for T € C3 1 0,13 J = 1,000,5 Ve have:



T0.

<

(L) B ]Zj(U,t)I A<o
’
P < :
(1) Pi,r M2(U) =M, < = , vhere Mg(u) exists by (Bg) ,
3 < <

111 = ® S K <

(iii) Pie |n(u) | Ho< o, Pi’rlkj(U)l @ g
>
(iv) A¥ = X% > 0, where A\*¥ _ is the minimum eigenvalue of V, .
1T e AWT:
—_— - + & s
Then, for e > 0, R(6, t%.i*) - ¢(8) = o(N BB e o

’

and T € C.

Proof. Since C is compact and T forms an open covering of C, there
exists a § > 0 such that for every 1 ¢ C, Sé(T) (@ it Rt &5 & [0
which is now independent of 1 € C, proceed exactly as in the proof

of Theorem 7. To complete the proof we need only show that the bounds
obtained in the proof of Theorem T are uniform in t € C.

Assumption (iii) provides uniform upper bounds in (11) and (16),
while assumptions (i), (ii), and (iii) yield uniform upper bounds for
the two terms on the right-hand side of (15). Next observe that
condition (iii) furnishes a uniform upper bound for dj’ J = Llgeeass

in (21). Also, (iii) and (iv) assure that b in (22) is uniformly

0

bounded from above on C. Finally, we need show that P peHE

e qe ()

a’
integrals of oy i =1,2,3 are bounded from above on C. By assumption

>
(1) AI . = A¥ >0, fori=0,1, 1 e C; while conditions (ii) and
t]
(iii) imply, respectively, that P, _ M_(U) and P. ”w(U)H3 are
T2, al
uniformly bounded from above for i = 0,1, t € C. Therefore, by applying

the norm triangle inequality in the first inequality of (31) and

bounding AI . from below by )* in (31) and (32), we have that the
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ui for i = 1,2,3 have uniformly bounded integrals in C with respect

to P x P

1,1 GGl d

ea,1' 1

Since all bounds in the proof of Theorem T (the bounds for the

term CN being similar) have been shown to be independent of T € C,

the proof is complete.

The conditions (i) - (iv) of Theorem 8 are satisfied by the
three examples given after Theorem 7. We shall verify this statement
for Example 1 only.

Note that q(Tj) for j = 1,...,5+1 is a continuous function on
T and hence by compactness of C there exists a constant

LR e e alty)

M = an12 {2ny + (1-sy)}, we have by (37) and (38), |Zj(u,1)| 2a

<
and kgk(u,r)l = M, on C. Thus, (i) and (ii) are satisfied.

Assumption (iii) is satisfied by uniform boundedness of h(u) and k(u)

. Hence with A = yn q and

given by (33). Assumption (iv) follows since A;’1 = min{”y”=l) yvi’ry'
is a continuous function of t for i = 0,1. We have thus established
that Theorem 8 holds for Example 1. Detailed analysis of Examples 2
and 3 yield the same result.

We now give a theorem which states under what conditions we can
obtain uniform convergence of the regret risk function when s = 1 and
T = [tl’t2]’ by <ty is a closed, bounded interval on the real line.
We shall here truncate X to k* in T, where k* is given by

(46) K*(X) = t, k(X), or t, as K(X) < ty, e [t),t,] or > ¢,
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Theorem 9.

Let T = [tl,t be a non-empty, closed, bounded interval of

o]

the real line. Assume that (Al), (Az),and (B,) nold for 1 e T and

2
ithat=forta e T S =01,

(i) ) |21 (U,1) |2 £ A=,
(ii) Py . My(U) 2 M, < =, where M,(u) exists by (B,),
(iii) Pi‘TIh(U)|3 SH<ow, Pi'r|k(U)|3 Sk<w,
(iv) A;,r 2 \¥ > 0, where A;,T is the minimum eigenvalue of Vi,T'
Then, for e >0, R(S,t%;g*) - ¢(8) = O(N-(l/2)+e) uniformly in 6 € Q_

and T € T,

Proof. Fix 1 € T. As in the proof of Theorem 7, write R(e,t% 1:*) =
’

AN e BN 2 CN' where A, B _,and Cn are three terms on the right-hand

N
side of (9).
Observe that a second-order Taylor expansion (relative to T)

of Z(u,k*) about Z(u,t) implies

(47) Pou |2(U,1) - 2(u,k*)|

Polk = tlu [2'(U, 0]+ 2 (K - 1)2uny(0)),

7 e

since |K* - 1| =k - 1], Now express AN - $(8) as in (10) and bound

A& - ¢(8) and AN - A& by inequalities (11) and (13) respectively.
Substitute inequality (47) into the second term on the right-hand
side of (13), weaken by the Schwarz inequality and (6) in

P, |n-8] = Fb)N 2 ang Polk - 1|5 ¢; 02 g et LEni e R

two inequalities into the first term on the right-hand side of (13)

and into (47), respectively. The resulting inequality is
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(48) A, - 8(8) £ f2(avd) G(n) + cpulzr(u,n) w2

G -1
+ 5 Cl u(Mz(U))N 5

Since assumptions (i), (ii) and (iii) provide uniform bounds on T for
u]Z'(U,T)I,u(Mz(U)) and o(h) and C,, respectively, (48) implies

(49) Ay - 8(8) = o3

uniformly in 6 € Qw and 1t € T,

g R

» 0 < c<-é—, uniformly in

6 e Q and T e T. We assume without loss of generality that ) 2 A

We now prove that BN

integral

Fix « € I, and consider inequality (18). To bound the Pogx P

at
of the first term on the right-hand side of (18) expand Z(u,k*) and

(a))

Z(u{i* on the set ES N Ez in a second-order Taylor expansion

about T and note that |k¥* - i*(a)| Syt |k(x,) = k(u)| to obtain,
(50) [2(u,k) < n) (20,0 25 (1 - (&) (-[e])

2| 8(z(uyt) = ) * B(EX - 1) 2'(u,1) = 3 8%, (u)

- D e zleloh(xl) ; ZkeIl.R#a(h(xl) L

na

N(Z(u,t) - 8) + N(k* -t ) 2'(u,1) + % NeMz(u)

- (h(u) - 1 nix,) + [k(x,) = k(w)|]2* (u,1)f

L 2SZ,sI
o
Let [Fu] denote the rignt-hand side of (50). Partition the Py x Py
integral of [Fa] into the sets {k = k*}, {k > k*} and {k < k*} .
On the set {k = k*}, write k* = k in [Fa] and enlarge the domain of
L e ;
integration by taking [k = k¥] = 1. With y(u) = (1,-Z(u,t)) and

{07 ) = (h(xl)-l ; k(xg)'T) apply the B-E normal approximation to

2
the sum of the N® - 1 random variables (y(u), w(XE)), Le I, ! # a,

conditionally on u, X , Xy, L € I, 8s in developing (25) and (26).



Th,
The resulting upper bound for PePl[Fu][f = k*] is then given by the

bound in (26) where the second term of the minimization is increased

by the term

Ly W),

(51) (Néll)'l/2¢'(o)PlP 4

ealk(Xa)—k(U))l |2'(U,1)| o

where the P. integral is on U, the P

5 2
1 integral on XOl and 01((y(u),w))

e(l

is for each u, the variance of (y(u),w(V)) under P, on V. Inequalities

i
(29) and (30) imply that the term (51) is £ (Néll)'l/2¢'(o)(xz T)'l/2
]

P Ik(Xa)-k(U)

*
« Since Ai . is uniformly bounded from below by
’

P
Lo
assumption (iv) and since P, ]]w(U)H3 and Pl|k(U)] and P,M,(U) are uni-

formly bounded from above by assumptions (iii) and (ii) respectively,
this inequality together with (31) and (32) substituted into (26) is

seen to yield

-1/2

(52) PePy[F ] [k = %] = O(min {1,(N8-1) n€})

uniformly in 1t ¢ T.

On the set {k < k*}, write k¥ = tl in [Fa] and enlarge the domain

<

of integration under the Py x P, integral by taking [k < k*] = 1.

it
Then apply the B-E normal approximation theorem to the sum of the
(N6-1) random variables h(XE) -1, 2 #a, L € I,, conditionally on

Uy X s Xps L e IO to obtain

(53) PP, [F,] [k < k*]

-1(

Z min {1,(N6-1)‘l/2 [0

. €
h) §'(0) (u PlMZ(U)

+ PlPea(lh(Xa) - a(0)| * [k(x) - k(W] |2'(U,7)]))

+ o, (m) 7 [n(w) - 2131} .
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The Schwarz integral inequality applied twice in the P. x P, term,

at
a
together with uniformly bounding all terms of (53) in accord with

assumptions (1), (ii), (iii) and (iv), yields the result
(54) PP [F ] [K < E*] = O(min {l,(Na-l)-lijE})
uniformly in T € T. A similar analysis shows that
(55) PP [F ) [k > k¥] = o(min{1, (¥6-1)"1/2n¢})
uniformly in t € T.
Observe that assumptions (iii) and (iv) imply that
b = SUP_ bo(r) < o, where b_ = bo(r) is the bound in (22), while

0

o dl(1) < =, for dl(r) in (21). Hence

inequalities (18), (22), (50), (52), (54), and (55) now combine to

(iii) implies d = sup

yield

(56) PgP1 (15 2u(0) =t £(a)*(V)) = Olmin {1, (§6-1)"2/25%1)

h,k*
uniformly in v € T.
Finally, summing (56) over for all a e I, and recalling the

definition of By, ve see that inequality (2.14) with C = N®

—(1/2)+
implies B,=0(N (s

uniformly in 6 € @ and T € T. The same is
true for the term CN . Hence, these results for BN and CN’ (49) and

(9) now complete the proof.

An example will now be given to illustrate the distinction
between Theorem 7 and uniform results on compact sets as given in
Theorem 8 andTheorem 9. Specifically, we will use Example 3 of

section 4.3 and show that for this example we can choose a sequence



T

—
1

e & such that the sequence of regret risk functions RN(e’tﬁ

s
¢N(§)"C(E)>0asN->°°foralleeQwsuchthatg-*E,E#(
as N » », Hence, for this example uniformity in t on the non-compact
set T = (0,») is impossible.

Let TN = Nl-ﬂs for some 6 > 0 and let 6 € ©_ Dbe such that

B oo C (a+b)_lb as N - », Observe that for Example 3 of L.3,

05(8) = a8 [a(8) 2 7 n(@ - D] + v(1-8) Py[a(®) < 13" n(¥ - )],
_ ool _ _ iz il
where q(6) = log {(a6)”" b(1-6)}. Hence, since Ty n ' “(U-i) is

N(0,1) under P, for i = 0,1, ve have
= 1 -1.1/2
mH2 4(8) - Hargh)H2))

8) - N

(57) 0,(8) = a B{&((ry

+ b(1-8) (1-2((r, 112 (@) + Hah YA}

-1
Noting that q(£) < or > O according as & > or < (a+b) "b, we see

that with 1 = e £, £ # (a+b)'lb as N » », equation (57)
implies
(58) ¢N(5) + b(1-£) or af according as £ > or < (a+b)-lb.
We now examine RN(S,tk i) as N + », Observe that for Example 3
’
h(XE) 27, 8 zj=l X,» and hence,
-1 - - > -
= = - =
(59) RN(e’tE,k) all Zuﬂlpe[uz(xa,k) X, Zl#a X,]
st § P (Nz(x k) -X <5, X,
aelo 6 a’ a R#Fa LT ?

== Sl 1 -1
where Z(Xa,k) = b(a exp {nk (Xa = 503 + b) ~. Observe that

-1 -1,1/2 = . -
(n(N=-1) T ) / ZHQ(X2 = el) is N(0,1) under Po and is independent
- ~ -1 0 =5
of X k(X)yeeek(X), where k(X)) = (n-1) 23:1“‘13 - X,)° from (L5).

Hence, we may integrate with respect to the joint marginal distribution



TT.
of the N-1 variables il’ 2 # a in each of the summands of (59) to
obtain,

(60) Ry a(e t )

= am'l uel e{Q({n(N-l)'l 'J} (Nz(xu;i) - NG - iu + ea})} it

Lz 5
=1 -1 -1 = e (
+ - = - =
bN ZasIOPe {1 & ({n(¥-1)""t 7} (NE(X k) - N6 - X+ o 1] -
- 1+6
Observe that by our choice of T N , § > 0, we can conclude that
s -l -1 1/2

1, the variable {n(N-1)

since |z(xa,i) - 8| vz (x, ,k) - N6} >0

N
in probability as N + =, for each & = 1,...,N. Also, since

-1,1/2 7 : -1 -1,1/2 37
(nt ™) (x, = 6,) is N(0,1), we have (n(N-1)""1") / (X, -8,) >0
in probability for o = 1,...,N. Hence, the sum of these two variables

given by the variable

e o Xa i
(61) {n(N-1)""1 7} {NZ(X ,k) - N6 = X, + 6.} > 0 in probability
for each = l,¢44,Ns
We now use (61) to obtain a limiting value for (60). Since a

continuous function of a random variable converging in probability to a
constant converges in probability to the corresponding functional value
of that constant, we see from (61), continuity of ¢, the bounded conver-
gence theorem, and the Toeplitz Lemma (see Loeve, [9], p. 238) that the

limiting value of (60) is given by

(62) limg . R, (0 th =
= a£#(0) + B(1-£)(0) = Flat + b(1-€))
Equations (58) and (62) yield as a limit for the regret risk function

the expression



L

(63) it {Ry (8,81 =) - ¢,(8)}= -Jzi(a+b) |g-(a+b) ™70 = tl(€) > o,

B T AR

where 6 + £ # (a+b)_lb and T, = N, 8§ > 0.

This completes the example which shows that uniformity in 6 e Q_
and T € T is unobtainable for Example 3 where T = (O,w) is non-compact.
That this is truly a contradiction to regret risk convergence uniform
in both 6 € @ and 1 ¢ T follows from the observation: If uniformity

held on both Q_ and T, then for the diagonal sequence (3&, )i PR =R SN

B

we would have R (6,€ = ¢N(6) + 0, which is contradicted by (63)

N ok

for Example 3 of section k4.3.

5. ©Specific Results when s = 1.

Let s = 1 and T be an open interval of the real line. Denote 3

by t and k., by k, and fix 1 ¢ T. We give two cases in which the factor

1

2
N can be eliminated in the convergence rate of Theorem T.

Theorem 10.

Let (Al)' (A2), and (B,) hold. If M e L2(Pi) and if h and k are
independent under P, for i = 0,1, then R(6,t -1/2)

i
e

uniformly in 6 e & _.

1
Proof. Choose 8§ > 0 such that S6 C T and express R(e’tﬁ,i*) = AN+BN+CN

N-1/2)

as in Theorem 7. Observe that AN - ¢(5) = (o)l uniformly in 6 € Q_

as in Theorem 7 with a first-order Taylor expansion in (1L4).

To obtain a bound for BN’ assume NO = 1, fix a € I,, and note

il
that



9.

(64) () -ty L(ae(e)

S [nz(u,E) - nlxy) < Loy nGxp) € n2E %) - ng)),

Let [Fu] denote the right-hand side of (64)., If we condition on

U, X5 Xg, £ € I and k(xl), 2 = 1,.44,N in the Pg x P, integral of

[Fa]’ then the B-E theorem yields, by independence of h and k, a bound

for this conditional probability given by

-1/2

(65)  (N8-2)7"%{0r (0) {oy (n)) ™ |n(w)-h(x ) |+8|2(u, K%)=z (u, K *) %) | 14, }

=3 8
where b = 2B{cl(h)} Pl|h(U) o5 allfjs

In the second term on the right —hand side of (65) expand Z(u,k*)

=(a)=x )

about Z(u,k in a first-order Taylor expansion on

= {|k* - @ < i6} N {Ii(a)* -1 < %6} to obtain

NlZ(u,E*) - Z(u,k ' I (xa)‘Ml(u). On the complement of
E bound ‘Z(u k*) - Z(u ()% )l by unity and note that a change of

<
variable, Tchebichev's inequality and (6) imply PePl(l - [E]) =

)2 86_2 012 N-l. Hence,

A

Bl € B
2P [|k* - 1| = 56] = 86 Pylk-1

(66) NP, P ]z(u k*) Z(U,E(“)*)| s Bl P 1 [E(U)=k(X )M (U) )+88~c 2

Finally, weakening by the Schwarz inequality to obtain

< 1/2
P, Pllk(U) & k(xa)lMl(U) z {2 PlMl2(U)} / ol(k) = b, and
o
Pllh(U) = h(xa)l S 21/2 cl(h), inequalities (65) and (66) imply
(67) PP [F,] £ min {1, (&0 o]

CLal/ie -1 -2c2)‘ e e,
where b3 = §'(0) {2 / +0) (h)(b2 + 80 1 s 1
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Recalling the definition of BN and summing the Pe b'q Pl integral of

inequality (64) for all o € Il’ we have, by inequality (67) and (2.1L)

with C = b3 and p = 5,

1/2 < 2\1/2
(68) N ENE a(l+b3) .

Hence,by (68), B = O(N_l/2) uniformly in 6 € @_. A similar argument

holds for CN’ and Theorem 10 is proved.

Note that in Example 3 following Theorem 7 the selection of
N, B 2 2, independent observations per problem furnish estimates
h and k, given by (L45), satisfying the independence condition of

Theorem 10.

Theorem 11.

Let (Bl) hold and assume there exists a function k € L3(Pi)
el
(

satisfying (4) such that o, k) >0 for i = 0,1. For almost all

u(v), let Z(u,t) be a strictly monotone function on T. Then, the

regret risk function R(e,t'a E*) - ¢(8) = O(N-l/2) uniformly in 6 € Q_-*
’

Proof., Choose § of assumption (bl) such that S, C T. Identify

t. =t

C é R in Lemma 5 to obtain
»

(69) RO, 5 o)

=(aﬁé&ﬁ%éiﬂm)+kﬂmeg&é£“UH

+ ant XaeIlPGPl(t%,E*(U) - té‘E(a)*(U))
= i
+bN ZQEIO Pepo(té i(")*(U) - tf 5x(0)).

’
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Let A;;, By,and C
(69).

N denote the three terms on the right-hand side of

§ * _ g BN .

ote that here A.N ¢(8) is equal to the AN AN term in the
proof of Theorem 7 with h replaced by 6. Hence, replacing h by )
in (12) and (13) in the proof of Theorem T, we obtain

(T0) A% - o(8) = Pou|z(U,k%) - 2(U, )| .

In (70) partition the space under the P, integral into Dy ={|k*- 1| < 8}

and its complement. For fixed u, expand Z(u,k*) about Z(u,t) on

(]

8

A

in a first-order Taylor expansion to obtain PelZ(u,E*) = Aligw)||
= <=l

Pe|k—1}Ml(u) =N - ClMl(u)’ where the last inequality follows from

the Schwarz integral inequality and (6). Bound |Z(u,k*) - 2(u,T)|

by unity on the complement of Dé and note that Tchebichev's inequality

and (6) imply Pe(l—[Dd]) £ Cl2 i, Hence, from (70) we obtain,
(11) M- 0@ S i)+ 67 ot

To bound the term BN,assume N© 21 and fix a ¢ Il' The
monotonicity assumption on Z implies that a unique inverse function
of Z(u,*), denoted of Z;l, exists on the range of Z(u,*) for almost

all u(v). Hence,

(12) tg pulw) - b2 (w) £ [F 1,

g;i(a)*

(a)

= =17 = = - -
where = = 2 = (@)
Ere F {k<z (6) =k "yor {k >2 7(6) = k'*’} according as

Z(u,*) is strictly increasing or decreasing on T.
For fixed u, X » X, 2 e I, the sun zlelll#a(k(xl) = ig)) ah B
falls into an interval of length lk(xa) - k(u)|. Hence a B-E approxi-

mation applied to the Py x P of [Fa] conditionally on u, X , and
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X0 L e IO’ together with weakening the resulting bound by

PeaPl|k(xa) L e o, (k), yields
(73) PP, [F,] = min {1, (NG-1)~'2 G
1/2

where € = 272 2(0) + 28{0, (k)13 P, |k(0)-1 .

Hence, recalling the definition of B and summing the P, x P. integral

N ] 1
of inequality (72) for all a € Ty (73) and (2.1k4) imply
(74) w2 B, = a(1+c2)Y/2 for a1l 6 € q_

A similar result holds for Cg, which together with (69), (71), and

(7T4) completes the proof.

It is interesting to note that Theorem 11 combines with Theorem 2
of Chapter II to state that if ) or 1 is known for the 2 x 2 compound
testing problem, then under suitable assumptions (see Theorem 2 and

Theorem 11) a regret risk convergence of order O(N-l/z)

uniformly in
6 € Q_ can be obtained. However, the convergence rate in Theorem 7
has an additional factor of NE, € > 0, when both 8 and 1 are unknown

T
and need to be estimated. Attempts to remove the factor N £ when

both 6 and t are unknown were unsuccessful except in Theorem 10.



SUMMARY

This thesis has demonstrated that compound decision procedures
which are asymptotically optimal in the sense of regret risk convergence
are obtainable for a variety of compound decision problems. The
existence of such procedures was heuristically argued by Robbins in
[10] and substantiated in the compound testing problem for two
distributions by Hannan and Robbins in [7]. Motivated by these two
papers, we proved convergence theorems for the regret risk function
of non-simple, non-randomized procedures which are "Bayes" against
estimates h of the empirical distribution on Q. The existence and
structure of the estimates n are given by Theorem 1 and (1.11).

Three cases were considered: (i) the compound testing problem
between two specified distributions; (ii) the general m x n compound
decision problem; and (iii) the compound testing problem between two
specified families of distributions indexed by a common nuisance
parameter.

Theorems 2, 5, and 7 give the basic regret risk convergence
theorems for the three respective cases. Theorem 5 is of particular
interest since it treats the original problem of Hannan and
Robbins (Theorem 4, [7]) in the general m x n compound decision
problem., Theorems 2 and 5 have uniform (in 6 € @) convergence rates
-1/2) while Theorem 7 has the slightly slower rate of

of O(N

O(N4@/a+e), ¢ > 0, caused by added estimation of the nuisance param-
eter. With the nuisance parameter in an open interval of the real

line, removal of the factor N'° is established in Theorem 10, if h

83.



8k,
is independent of the estimate of the nuisance parameter, and in
Theorem 11, if the empirical distribution on Q@ = {0,1} is known.
Theorems 3 and 4 reveal that, in the compound testing problem

=-1/2
for two distributions, uniform convergence rates of o(N / )

and
O(N_l) are attained if appropriate continuity conditions are imposed
on Po and Pl. Note that Theorem 4 states conditions under which the
procedure (2.9) has, regardless of the size of N, a sum of expected
losses for the N problems within a uniform constant of the minimum
expected sum of losses among all simple procedures. Theorem 6
generalizes the result of Theorem U4 under a suitable condition on
the m x n loss matrix,

Examples illustrating the extent, applicability, and non-vacuity
of the sufficient conditions were given for all theorems. Examples
were also presented to show that Theorem 6 is false without condition
(C) and to demonstrate that uniformity in both the nuisance parameter Tt
and 6 € @ is impossible in Theorem T.

Finally, we point out that Theorems 2 - 1l can be extended to
include the non-simple, randomized procedure which is attained by
substituting h for p(6) (and k for T in Theorems 7 - 11) in the simple
randomized procedure which assigns equal probabilities of selection
among the columns minimizing (p(6), LYf) in (1.7). This randomized

rule and the proof of this statement are given in Appendix 3.



APPENDIX 1.

Proof that Condition (II") Implies Condition (II') when u = P,

See Chapter III for the discussion of conditions II' and TS

Lemma 1.1.

Let Xi’ i = 0,.0.,m-1 be independent and identically distributed

uniform random variables on [0,1]. If O < k £ 1 and if Zj = X-(l,X)-l,
E) 1 it

i=1,s0s,m-1 and Z = (Zl,...,Zm_l), then the conditional distribution

m=1
of Z given (1,X) = [ _ X, = k is uniform on S = {z =(2yse00s2

2
i=o )lzi .

m=-1
@ = ({(Lya) Sl

m-1
Proof. Fix z., 1 = 1,...,m-1 such that z.20, 0<y. S SHPSEThen
i=

(1) P{(1,X) < k, Z; < 24, DS b el

1 1
= JC) ...j; [(1,x) <k, xi<(1,x)zi, i=l,...,m-1] dXgee X o

m-1 (% k m-1
3 % m-1 -1 . m
<1._ d vy !’0 Yo Wg = (Mjoy z;) m ™ K,
where the second equality follows from the transformation y.= xi(l,x)-l

: ’ m-1
ety T (1,x), having Jacobian s 5

Similarly, the marginal distribution of ¥, = (1,X) is given by

il AL
(2) P{Yo <k} = [0 ---fo [0 s (1,x)¢ k] axg...ax | = el o,

m-1
which follows from the transformation yj = zi=j Xis J = Ogeee,m=1

having unit Jacobian. The lemma follows from (1) and (2) by expressing

the conditional density of (Zl,...,Zm_l) as the joint density of

3 4 (1,X)) vhich by (1) equals ¥"~' divided by the density
oy m?

of (1,X) which by (2) equals {(m—l)!}—l s

85
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Lemma 1.2.

m-1 ==
Letu= P, = z. P; and let P; 2 g represent the induced

i=
distribution on S under the transformation Z: u ~ Z (u),...,Zm_l(u),

ab
with Z2; = dP,/dP , for i = 1,...,m-1. If for some K Pii-l = K"Am—l’
then there exists a K' such that Pif-l[Bj] ) K'Am[B |} difere BJ(v,a,b)
of the form (3.14) with K = 1 and v;(b- K) = 0, where f = (Zo,...,Z 5

m-1
o] -1 =il ’
Proof. Note that by the definition of P;f =, PyZ2 =, and the assumption
of this lemma, we have for j = 1l,...,m-1,
1 S m-1
- ; = <
(3) P, f [bj] s P27 ([-v, s La=1 (vg-vy) 2, £ a—vo][zj < )
o L =t
= K"Am_l([-vo = 22=1(V1‘Vo)zg £ a-v, N[z <tz S]) 5
m-1
If j = 0, replace the second factor in (3) by [1-b 2 2j=l ZJ]' With
-1
= * =
o 1 Am_l[S], we see that the measure Am-l @ "y Am—l’ when

restricted to S, is uniform on S. Hence, by Lemma 1.1, the right-hand

side of (3) equals for j = O,...,m-1,

K' [ / (0 -(v x) fa(l,x)]{x; = (1,%)0][0 <(1,x) S1lax ...dx; s

1
jfo (0 < (1,x) S 1)ax ...ax

sk
wnere K' = K"a_ o " and a = e
m=-1m m 5 el

Observing that @ = {k!}-l for k = m=1 or m and that the function

under the integral in (l4) is bounded by [Bj](x), we have that (4) sub-

-l[B‘

stituted into (3) implies P;f J]

< K'Am[Bj], where

K' = a a - K" =m K", and the lemma is proved.

Lemma 1.2 proves that condition (II") implies condition (II')

when p = P o



APPENDIX 2

Truncation of k to a Convex Set of RS.

Let T = {1 = (tl....,rs)lti € R} be a convex set of RS, With T
as the nuisance parameter set of Chapter IV, we shall give a constructive

method of truncating k(X), given by (L.5), to T.

Lemma 2.1.
1f T is an exterior point of T, then there exists a unique point
1} in the boundary of T, denoted B(T), such that ”1 -1 ||=minTeT“TO-r”,

where T is the closure of the convex set T.

-~ ' —_
Proof. Since T is closed, there exists a Ty € T such that

“TO—Téll= min1eTl| Suppose ré is an inner point of T. Then

the line segment M% + (l-k)ro, 0 £ A £ 1, would intersect the boundary

"
of T at a point 10 = AO 0

“10-18l|= Ay “10—16||< “To-Tén, which is a contradiction. Therefore,

" -
o+ (1-xy)Tgs O < Ay < 1. Then 14 € T and

16 is not an inner point, and hence is a boundary point of T.

To show that t' is unique, suppose there exists T in the boundary

0

of T such that HIO—11||= min_ =~ uTO-T”, 1, # 1. Then the three

1eT
points T ré,and T, are the vertices of an isosceles triangle having

equal sides "10-18“ = ”To-Tl". Hence, the mid-point of the base,

given by T, = %(16 + Tl) satisfies the Pythagorean equality

) 2 e 2
(0 rymtl? + rgtl® = Ity

But, by convexity of T, we have T, € T and thus minTETILb-1||§ “TO'TQH

1 e A
é%ﬂ10_18“ i Eﬂro-rl||= TETHT -t| . Hence, (1) implies ”Tl 12|| 0

87.
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or T, = Ty, @ contradiction, Therefore, T is unique and the

lemma is proved.

Lemma 2.2 (Blackwell and Girshick),

Let T be a convex set in R°. If T is an inner point of T and
T, a boundary point of T, then the points (l-A)rl + A1, are inner
points of T for O SEAN< T,

Proof. See Lemma 2.2.1(a) of [1].

With the aid of Lemmas 2,1 and 2.2 we can now truncate
k(x) = (k)(X),000,k (X)) to T as follows. Let T, € T be a fixed
interior point of T, which exists by the assumption on T in Chapter IV,

- - X -
Denote k (X) = (kl*(X),...,k:(X)) as the truncation of k(X) to T

given by,

k(x) if k(X) e T
(2)  k*(x) = K'(X) if K'(X)eT, K(X) ¢ T
(AON)'110+(1-(AON71)E'(x) if K'(X) ¢ T,
k(x) ¢ T,
where K'(X) is the unique boundary value of T closest to k(X) given
in Lemma 2.1 and A = max1eB(T)HTO-TI
that k*(X) € T in the case where K'(X) ¢ T and kK(X) ¢ T. The truncated

. Note that Lemma 2.2 guarantees

estimate k* depends on the fixed value Toe Note that from (2) we have
that if k ¢ T, then || k*-k'| £ (AON)-l HTO-E'H S ut.  Thuswitn we
convex set of R° we have exhibited a constructive method of truncation

meeting the requirements of Chapter IV,



APPENDIX 3

Extension of Results for a Randomized Procedure,

We extend Theorems 2 - 11 to the non-simple, randomized procedure
defined by substituting the estimate h for p(6) (and k for t in
Chapter IV) in the simple randomized procedure which assigns equal
probabilities of selection among all columns minimizing (p(6), Lf)
in (1.7). Such a randomized, non-simple rule is given by the N x n

matrix of function T*(x) = (t:j(x)), where for j = O,essyn=1, @ = 1,...,N,
(1) t;j(x) = r-l(a,x) or 0 according as j e or ¢ Ra(x),

where Ra(x) = {j|(g,Ljf(xa)) = min(K,ka(xa))}, having cardinality
r(a,x). We shall show that Theorems 2 - 11 (also, substitute f*;or
T in Chapter IV) hold for the randomized procedure T*(x).

Let 7L be the class of all permutations on the integers
{0,e00on-1}. The elements of 72, denoted by m , are 1-1 functions of
{0,+..,n-1} onto itself defined by m(0,...,n=1) = {m(0),...,m(n-1)},
where m(j) € {0y¢00,n=-1} and n(j) = (k) if and only if j = k.

Let ' denote the identity permutation having '(j) = j for j = 0,...,m-1.
Now define the following class of non-randomized rules tg, T E 9L 5

given by
1 if (K,Lj“f(xa)) < or £ 0 according as

(NSl ()= m(v) < w(j) or m(v) > w(J)
s R
0 otherwise.

Note that t! (x ) is that particular non-randomized, non-simple rule
a

’
given by (1.12) for which Theorems 2-11 are proved. Modifications of

89.
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this rule were made in Chapters II and IV and the corresponding
modifications hold for the permuted rules in (2).

Now average the regret risk functions of the n! rules t% and
interchange the order of summation and integration to obtain
Theorems 2 - 11 holding for the non-simple procedure defined by the

N x n functions

et s o t:_l j(xu), @ = 1,000,N, J = Oyuusyn-l.

We shall now prove that (3) = t:j(x).

Fix o,j,x and let r = r(a,x), R = Ra(x). Observe that j ¢ R
implies t%’j(xa) =0 for all m ¢ X . Hence, if j ¢ R, (3) = 0 and
so is t:j(x) given by (1). Next, observe that if j € R, then g
2ﬂe9l t%’j(xa) = ZWE?Z [n(v) > n(j) for all v € R, where v # j] = zt=°
Z{"|"(3)=t} [m(v) >t for all v € R, where v # j]. The number of
permutations m € X having the permuted position m(j) fixed at t and
with r-1 permuted positions m(v) greater than t is (n-t-1)! P(n-r,t),
where P(n,k) is the permutation of n objects k at a time. With C(n,k)

denoting the combination of n objects k at a time, we have

(n-t-1)! P(n-r,t)=C(n-t-1,r-1) (n-r)! (r-1)! Hence, by our earlier
nsr

. . m o s
observations we have that if j € R, then Eﬂeh tH,j(x“) Zt=o(n t-1)!
n-r
P(n-r,t) = (n-r)! (r-1)! zt C(n-t-1,r-1). Finally, since
=0

n-r
Xt=o ¢(n-t-1,r-1) = C(n,r), (see Feller [3], (12.8), p. 62), we

conclude that if j € R,

it m . et
(L) (n!) 2ﬂe9z tﬂ,J(x“) =r .
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Hence, we have shown that t*a j(x) defined by (1) equals (3). Since
’
Theorems 2 - 11 hvold for the procedure given by (3), the same is true

for T*(x) defined by (1).
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